Monday, December 9, 2013

Risks of Zero Interest Rates, Mediocre United States Economic Growth, Twenty Eight Million Unemployed/Underemployed, United States Trade, United States Housing Collapse, World Economic Slowdown and Global Recession Risk: Part I

 

Risks of Zero Interest Rates, Mediocre United States Economic Growth, Twenty Eight Million Unemployed/Underemployed, United States Trade, United States Housing Collapse, World Economic Slowdown and Global Recession Risk

Carlos M. Pelaez

© Carlos M. Pelaez, 2009, 2010, 2011, 2012, 2013

Executive Summary

I Mediocre and Decelerating United States Economic Growth

IA Mediocre and Decelerating United States Economic Growth

IA1 Contracting Real Private Fixed Investment

IA2 Swelling Undistributed Corporate Profits

IB Stagnating Real Disposable Income and Consumption Expenditures

IB1 Stagnating Real Disposable Income and Consumption Expenditures

IB2 Financial Repression

II Twenty Nine Million Unemployed or Underemployed

IIA1 Summary of the Employment Situation

IIA2 Number of People in Job Stress

IIA3 Long-term and Cyclical Comparison of Employment

IIA4 Job Creation

IIB Stagnating Real Wages

IIC United States International Trade

IID United States Housing Collapse

III World Financial Turbulence

IIIA Financial Risks

IIIE Appendix Euro Zone Survival Risk

IIIF Appendix on Sovereign Bond Valuation

IV Global Inflation

V World Economic Slowdown

VA United States

VB Japan

VC China

VD Euro Area

VE Germany

VF France

VG Italy

VH United Kingdom

VI Valuation of Risk Financial Assets

VII Economic Indicators

VIII Interest Rates

IX Conclusion

References

Appendixes

Appendix I The Great Inflation

IIIB Appendix on Safe Haven Currencies

IIIC Appendix on Fiscal Compact

IIID Appendix on European Central Bank Large Scale Lender of Last Resort

IIIG Appendix on Deficit Financing of Growth and the Debt Crisis

IIIGA Monetary Policy with Deficit Financing of Economic Growth

IIIGB Adjustment during the Debt Crisis of the 1980s

Executive Summary

Contents of Executive Summary

ESI Increasing Interest Rate Risk, Tapering Quantitative Easing, Duration Dumping, Steepening Yield Curve and Global Financial and Economic Risk

ESII Mediocre United States Economic Growth

ESIII Contracting Real Private Fixed Investment

ESIV Swelling Undistributed Corporate Profits

ESV Stagnating Real Disposable Per Capita Income

ESVI Twenty Eight Million Unemployed or Underemployed

ESVII Insufficient Job Creation

ESVIII Stagnating Real Wages

ESI Increasing Interest Rate Risk, Tapering Quantitative Easing, Duration Dumping, Steepening Yield Curve and Global Financial and Economic Risk. The International Monetary Fund (IMF) provides an international safety net for prevention and resolution of international financial crises. The IMF’s Financial Sector Assessment Program (FSAP) provides analysis of the economic and financial sectors of countries (see Pelaez and Pelaez, International Financial Architecture (2005), 101-62, Globalization and the State, Vol. II (2008), 114-23). Relating economic and financial sectors is a challenging task for both theory and measurement. The International Monetary Fund (IMF) provides an international safety net for prevention and resolution of international financial crises. The IMF’s Financial Sector Assessment Program (FSAP) provides analysis of the economic and financial sectors of countries (see Pelaez and Pelaez, International Financial Architecture (2005), 101-62, Globalization and the State, Vol. II (2008), 114-23). Relating economic and financial sectors is a challenging task for both theory and measurement. The IMF (2013WEOOct) provides surveillance of the world economy with its Global Economic Outlook (WEO) (http://www.imf.org/external/pubs/ft/weo/2013/02/), of the world financial system with its Global Financial Stability Report (GFSR) (IMF 2013GFSROct) (http://www.imf.org/External/Pubs/FT/GFSR/2013/02/index.htm) and of fiscal affairs with the Fiscal Monitor (IMF 2013FMOct) (http://www.imf.org/external/pubs/ft/fm/2013/02/fmindex.htm). There appears to be a moment of transition in global economic and financial variables that may prove of difficult analysis and measurement. It is useful to consider a summary of global economic and financial risks, which are analyzed in detail in the comments of this blog in Section VI Valuation of Risk Financial Assets, Table VI-4.

Economic risks include the following:

  1. China’s Economic Growth. China is lowering its growth target to 7.5 percent per year. China’s GDP growth decelerated significantly from annual equivalent 10.8 percent in IIQ2011 to 7.4 percent in IVQ2011 and 5.7 percent in IQ2012, rebounding to 9.1 percent in IIQ2012, 8.2 percent in IIIQ2012 and 7.8 percent in IVQ2012. Annual equivalent growth in IQ2013 fell to 6.1 percent and to 7.8 percent in IIQ2013, rebounding to 9.1 percent in IIIQ2013 (http://cmpassocregulationblog.blogspot.com/2013/10/twenty-eight-million-unemployed-or.html and earlier at http://cmpassocregulationblog.blogspot.com/2013/07/tapering-quantitative-easing-policy-and_7005.html and earlier at http://cmpassocregulationblog.blogspot.com/2013/01/recovery-without-hiring-world-inflation.html and earlier at http://cmpassocregulationblog.blogspot.com/2012/10/world-inflation-waves-stagnating-united_21.html).
  2. United States Economic Growth, Labor Markets and Budget/Debt Quagmire. The US is growing slowly with 28.1 million in job stress, fewer 10 million full-time jobs, high youth unemployment, historically low hiring and declining/stagnating real wages.
  3. Economic Growth and Labor Markets in Advanced Economies. Advanced economies are growing slowly. There is still high unemployment in advanced economies.
  4. World Inflation Waves. Inflation continues in repetitive waves globally (http://cmpassocregulationblog.blogspot.com/2013/11/risks-of-zero-interest-rates-world.html and earlier http://cmpassocregulationblog.blogspot.com/2013/11/global-financial-risk-world-inflation.htm).

A list of financial uncertainties includes:

  1. Euro Area Survival Risk. The resilience of the euro to fiscal and financial doubts on larger member countries is still an unknown risk.
  2. Foreign Exchange Wars. Exchange rate struggles continue as zero interest rates in advanced economies induce devaluation of their currencies.
  3. Valuation of Risk Financial Assets. Valuations of risk financial assets have reached extremely high levels in markets with lower volumes.
  4. Duration Trap of the Zero Bound. The yield of the US 10-year Treasury rose from 2.031 percent on Mar 9, 2012, to 2.294 percent on Mar 16, 2012. Considering a 10-year Treasury with coupon of 2.625 percent and maturity in exactly 10 years, the price would fall from 105.3512 corresponding to yield of 2.031 percent to 102.9428 corresponding to yield of 2.294 percent, for loss in a week of 2.3 percent but far more in a position with leverage of 10:1. Min Zeng, writing on “Treasurys fall, ending brutal quarter,” published on Mar 30, 2012, in the Wall Street Journal (http://professional.wsj.com/article/SB10001424052702303816504577313400029412564.html?mod=WSJ_hps_sections_markets), informs that Treasury bonds maturing in more than 20 years lost 5.52 percent in the first quarter of 2012.
  5. Credibility and Commitment of Central Bank Policy. There is a credibility issue of the commitment of monetary policy (Sargent and Silber 2012Mar20).
  6. Carry Trades. Commodity prices driven by zero interest rates have resumed their increasing path with fluctuations caused by intermittent risk aversion

Chart VIII-1 of the Board of Governors of the Federal Reserve System provides the rate on the overnight fed funds rate and the yields of the 10-year constant maturity Treasury and the Baa seasoned corporate bond. Table VIII-3 provides the data for selected points in Chart VIII-1. There are two important economic and financial events, illustrating the ease of inducing carry trade with extremely low interest rates and the resulting financial crash and recession of abandoning extremely low interest rates.

  • The Federal Open Market Committee (FOMC) lowered the target of the fed funds rate from 7.03 percent on Jul 3, 2000, to 1.00 percent on Jun 22, 2004, in pursuit of non-existing deflation (Pelaez and Pelaez, International Financial Architecture (2005), 18-28, The Global Recession Risk (2007), 83-85). Central bank commitment to maintain the fed funds rate at 1.00 percent induced adjustable-rate mortgages (ARMS) linked to the fed funds rate. Lowering the interest rate near the zero bound in 2003-2004 caused the illusion of permanent increases in wealth or net worth in the balance sheets of borrowers and also of lending institutions, securitized banking and every financial institution and investor in the world. The discipline of calculating risks and returns was seriously impaired. The objective of monetary policy was to encourage borrowing, consumption and investment. The exaggerated stimulus resulted in a financial crisis of major proportions as the securitization that had worked for a long period was shocked with policy-induced excessive risk, imprudent credit, high leverage and low liquidity by the incentive to finance everything overnight at interest rates close to zero, from adjustable rate mortgages (ARMS) to asset-backed commercial paper of structured investment vehicles (SIV). The consequences of inflating liquidity and net worth of borrowers were a global hunt for yields to protect own investments and money under management from the zero interest rates and unattractive long-term yields of Treasuries and other securities. Monetary policy distorted the calculations of risks and returns by households, business and government by providing central bank cheap money. Short-term zero interest rates encourage financing of everything with short-dated funds, explaining the SIVs created off-balance sheet to issue short-term commercial paper with the objective of purchasing default-prone mortgages that were financed in overnight or short-dated sale and repurchase agreements (Pelaez and Pelaez, Financial Regulation after the Global Recession, 50-1, Regulation of Banks and Finance, 59-60, Globalization and the State Vol. I, 89-92, Globalization and the State Vol. II, 198-9, Government Intervention in Globalization, 62-3, International Financial Architecture, 144-9). ARMS were created to lower monthly mortgage payments by benefitting from lower short-dated reference rates. Financial institutions economized in liquidity that was penalized with near zero interest rates. There was no perception of risk because the monetary authority guaranteed a minimum or floor price of all assets by maintaining low interest rates forever or equivalent to writing an illusory put option on wealth. Subprime mortgages were part of the put on wealth by an illusory put on house prices. The housing subsidy of $221 billion per year created the impression of ever-increasing house prices. The suspension of auctions of 30-year Treasuries was designed to increase demand for mortgage-backed securities, lowering their yield, which was equivalent to lowering the costs of housing finance and refinancing. Fannie and Freddie purchased or guaranteed $1.6 trillion of nonprime mortgages and worked with leverage of 75:1 under Congress-provided charters and lax oversight. The combination of these policies resulted in high risks because of the put option on wealth by near zero interest rates, excessive leverage because of cheap rates, low liquidity because of the penalty in the form of low interest rates and unsound credit decisions because the put option on wealth by monetary policy created the illusion that nothing could ever go wrong, causing the credit/dollar crisis and global recession (Pelaez and Pelaez, Financial Regulation after the Global Recession, 157-66, Regulation of Banks, and Finance, 217-27, International Financial Architecture, 15-18, The Global Recession Risk, 221-5, Globalization and the State Vol. II, 197-213, Government Intervention in Globalization, 182-4). The FOMC implemented increments of 25 basis points of the fed funds target from Jun 2004 to Jun 2006, raising the fed funds rate to 5.25 percent on Jul 3, 2006, as shown in Chart VIII-1. The gradual exit from the first round of unconventional monetary policy from 1.00 percent in Jun 2004 to 5.25 percent in Jun 2006 caused the financial crisis and global recession.
  • On Dec 16, 2008, the policy determining committee of the Fed decided (http://www.federalreserve.gov/newsevents/press/monetary/20081216b.htm): “The Federal Open Market Committee decided today to establish a target range for the federal funds rate of 0 to 1/4 percent.” Policymakers emphasize frequently that there are tools to exit unconventional monetary policy at the right time. At the confirmation hearing on nomination for Chair of the Board of Governors of the Federal Reserve System, Vice Chair Yellen (2013Nov14 http://www.federalreserve.gov/newsevents/testimony/yellen20131114a.htm), states that: “The Federal Reserve is using its monetary policy tools to promote a more robust recovery. A strong recovery will ultimately enable the Fed to reduce its monetary accommodation and reliance on unconventional policy tools such as asset purchases. I believe that supporting the recovery today is the surest path to returning to a more normal approach to monetary policy.” Perception of withdrawal of $2511 billion, or $2.5 trillion bank reserves (http://www.federalreserve.gov/releases/h41/current/h41.htm#h41tab1), would cause Himalayan increase in interest rates that would provoke another recession. There is no painless gradual or sudden exit from zero interest rates because reversal of exposures created on the commitment of zero interest rates forever.

In his classic restatement of the Keynesian demand function in terms of “liquidity preference as behavior toward risk,” James Tobin (http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/1981/tobin-bio.html) identifies the risks of low interest rates in terms of portfolio allocation (Tobin 1958, 86):

“The assumption that investors expect on balance no change in the rate of interest has been adopted for the theoretical reasons explained in section 2.6 rather than for reasons of realism. Clearly investors do form expectations of changes in interest rates and differfrom each other in their expectations. For the purposes of dynamic theory and of analysis of specific market situations, the theories of sections 2 and 3 are complementary rather than competitive. The formal apparatus of section 3 will serve just as well for a non-zero expected capital gain or loss as for a zero expected value of g. Stickiness of interest rate expectations would mean that the expected value of g is a function of the rate of interest r, going down when r goes down and rising when r goes up. In addition to the rotation of the opportunity locus due to a change in r itself, there would be a further rotation in the same direction due to the accompanying change in the expected capital gain or loss. At low interest rates expectation of capital loss may push the opportunity locus into the negative quadrant, so that the optimal position is clearly no consols, all cash. At the other extreme, expectation of capital gain at high interest rates would increase sharply the slope of the opportunity locus and the frequency of no cash, all consols positions, like that of Figure 3.3. The stickier the investor's expectations, the more sensitive his demand for cash will be to changes in the rate of interest (emphasis added).”

Tobin (1969) provides more elegant, complete analysis of portfolio allocation in a general equilibrium model. The major point is equally clear in a portfolio consisting of only cash balances and a perpetuity or consol. Let g be the capital gain, r the rate of interest on the consol and re the expected rate of interest. The rates are expressed as proportions. The price of the consol is the inverse of the interest rate, (1+re). Thus, g = [(r/re) – 1]. The critical analysis of Tobin is that at extremely low interest rates there is only expectation of interest rate increases, that is, dre>0, such that there is expectation of capital losses on the consol, dg<0. Investors move into positions combining only cash and no consols. Valuations of risk financial assets would collapse in reversal of long positions in carry trades with short exposures in a flight to cash. There is no exit from a central bank created liquidity trap without risks of financial crash and another global recession. The net worth of the economy depends on interest rates. In theory, “income is generally defined as the amount a consumer unit could consume (or believe that it could) while maintaining its wealth intact” (Friedman 1957, 10). Income, Y, is a flow that is obtained by applying a rate of return, r, to a stock of wealth, W, or Y = rW (Ibid). According to a subsequent statement: “The basic idea is simply that individuals live for many years and that therefore the appropriate constraint for consumption is the long-run expected yield from wealth r*W. This yield was named permanent income: Y* = r*W” (Darby 1974, 229), where * denotes permanent. The simplified relation of income and wealth can be restated as:

W = Y/r (10

Equation (1) shows that as r goes to zero, r→0, W grows without bound, W→∞. Unconventional monetary policy lowers interest rates to increase the present value of cash flows derived from projects of firms, creating the impression of long-term increase in net worth. An attempt to reverse unconventional monetary policy necessarily causes increases in interest rates, creating the opposite perception of declining net worth. As r→∞, W = Y/r →0. There is no exit from unconventional monetary policy without increasing interest rates with resulting pain of financial crisis and adverse effects on production, investment and employment.

clip_image001

Chart VIII-1, Fed Funds Rate and Yields of Ten-year Treasury Constant Maturity and Baa Seasoned Corporate Bond, Jan 2, 2001 to Nov 21, 2013 

Source: Board of Governors of the Federal Reserve System

http://www.federalreserve.gov/releases/h15/

Table VIII-3, Selected Data Points in Chart VIII-1, % per Year

 

Fed Funds Overnight Rate

10-Year Treasury Constant Maturity

Seasoned Baa Corporate Bond

1/2/2001

6.67

4.92

7.91

10/1/2002

1.85

3.72

7.46

7/3/2003

0.96

3.67

6.39

6/22/2004

1.00

4.72

6.77

6/28/2006

5.06

5.25

6.94

9/17/2008

2.80

3.41

7.25

10/26/2008

0.09

2.16

8.00

10/31/2008

0.22

4.01

9.54

4/6/2009

0.14

2.95

8.63

4/5/2010

0.20

4.01

6.44

2/4/2011

0.17

3.68

6.25

7/25/2012

0.15

1.43

4.73

5/1/13

0.14

1.66

4.48

9/5/13

0.08

2.98

5.53

11/21/2013

0.09

2.79

5.44

11/27/13

0.09

2.74

5.34 (11/26/13)

Source: Board of Governors of the Federal Reserve System

http://www.federalreserve.gov/releases/h15/

Professionals use a variety of techniques in measuring interest rate risk (Fabozzi, Buestow and Johnson, 2006, Chapter Nine, 183-226):

  • Full valuation approach in which securities and portfolios are shocked by 50, 100, 200 and 300 basis points to measure their impact on asset values
  • Stress tests requiring more complex analysis and translation of possible events with high impact even if with low probability of occurrence into effects on actual positions and capital
  • Value at Risk (VaR) analysis of maximum losses that are likely in a time horizon
  • Duration and convexity that are short-hand convenient measurement of changes in prices resulting from changes in yield captured by duration and convexity
  • Yield volatility

Analysis of these methods is in Pelaez and Pelaez (International Financial Architecture (2005), 101-162) and Pelaez and Pelaez, Globalization and the States, Vol. (I) (2008a), 78-100). Frederick R. Macaulay (1938) introduced the concept of duration in contrast with maturity for analyzing bonds. Duration is the sensitivity of bond prices to changes in yields. In economic jargon, duration is the yield elasticity of bond price to changes in yield, or the percentage change in price after a percentage change in yield, typically expressed as the change in price resulting from change of 100 basis points in yield. The mathematical formula is the negative of the yield elasticity of the bond price or –[dB/d(1+y)]((1+y)/B), where d is the derivative operator of calculus, B the bond price, y the yield and the elasticity does not have dimension (Hallerbach 2001). The duration trap of unconventional monetary policy is that duration is higher the lower the coupon and higher the lower the yield, other things being constant. Coupons and yields are historically low because of unconventional monetary policy. Duration dumping during a rate increase may trigger the same crossfire selling of high duration positions that magnified the credit crisis. Traders reduced positions because capital losses in one segment, such as mortgage-backed securities, triggered haircuts and margin increases that reduced capital available for positioning in all segments, causing fire sales in multiple segments (Brunnermeier and Pedersen 2009; see Pelaez and Pelaez, Regulation of Banks and Finance (2008b), 217-24). Financial markets are currently experiencing fear of duration resulting from the debate within and outside the Fed on tapering quantitative easing. Table VIII-2 provides the yield curve of Treasury securities on Dec 6, 2013, Sep 5, 2013, May 1, 2013, Dec 6, 2012 and Nov 6, 2006. There is ongoing steepening of the yield curve for longer maturities, which are also the ones with highest duration. The 10-year yield increased from 1.45 percent on Jul 26, 2012 to 2.98 percent on Sep 5, 2013, as measured by the United States Treasury. Assume that a bond with maturity in 10 years were issued on Sep 5, 2013 at par or price of 100 with coupon of 1.45 percent. The price of that bond would be 86.8530 with instantaneous increase of the yield to 2.98 percent for loss of 13.1 percent and far more with leverage. Assume that the yield of a bond with exactly ten years to maturity and coupon of 2.88 percent as occurred on Dec 6, 2013 would jump instantaneously from yield of 2.88 percent on Dec 6, 2013 to 4.48 percent as occurred on Dec 6, 2006 when the economy was closer to full employment. The price of the hypothetical bond issued with coupon of 2.75 percent would drop from 100 to 87.2168 after an instantaneous increase of the yield to 4.48 percent. The price loss would be 12.8 percent. Losses absorb capital available for positioning, triggering crossfire sales in multiple asset classes (Brunnermeier and Pedersen 2009). What is the path of adjustment of zero interest rates on fed funds and artificially low bond yields? There is no painless exit from unconventional monetary policy. Chris Dieterich, writing on “Bond investors turn to cash,” on Jul 25, 2013, published in the Wall Street Journal (http://online.wsj.com/article/SB10001424127887323971204578625900935618178.html), uses data of the Investment Company Institute (http://www.ici.org/) in showing withdrawals of $43 billion in taxable mutual funds in Jun, which is the largest in history, with flows into cash investments such as $8.5 billion in the week of Jul 17 into money-market funds.

Table VIII-2, United States, Treasury Yields

 

12/6/13

9/05/13

5/01/13

12/6/12

12/6/06

1 M

0.03

0.03

0.03

0.07

4.91

3 M

0.06

0.02

0.06

0.10

4.99

6 M

0.10

0.06

0.08

0.14

5.05

1 Y

0.13

0.16

0.11

0.18

4.90

2 Y

0.30

0.52

0.20

0.25

4.59

3 Y

0.64

0.97

0.30

0.32

4.48

5 Y

1.51

1.85

0.65

0.60

4.44

7 Y

2.23

2.45

1.07

1.00

4.44

10 Y

2.88

2.98

1.66

1.59

4.48

20 Y

3.63

3.64

2.44

2.33

4.69

30 Y

3.90

3.88

2.83

2.76

4.60

Source: United States Treasury

http://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yield

Interest rate risk is increasing in the US. Chart VI-13 of the Board of Governors provides the conventional mortgage rate for a fixed-rate 30-year mortgage. The rate stood at 5.87 percent on Jan 8, 2004, increasing to 6.79 percent on Jul 6, 2006. The rate bottomed at 3.35 percent on May 2, 2013. Fear of duration risk in longer maturities such as mortgage-backed securities caused continuing increases in the conventional mortgage rate that rose to 4.51 percent on Jul 11, 2013, 4.58 percent on Aug 22, 2013 and 4.46 percent on Dec 5, 2013, which is the last data point in Chart VI-13.

clip_image003

Chart VI-13, US, Conventional Mortgage Rate, Jan 8, 2004 to Dec 5, 2013

Source: Board of Governors of the Federal Reserve System

http://www.federalreserve.gov/releases/h15/update/

The major reason and channel of transmission of unconventional monetary policy is through expectations of inflation. Fisher (1930) provided theoretical and historical relation of interest rates and inflation. Let in be the nominal interest rate, ir the real or inflation-adjusted interest rate and πe the expectation of inflation in the time term of the interest rate, which are all expressed as proportions. The following expression provides the relation of real and nominal interest rates and the expectation of inflation:

(1 + ir) = (1 + in)/(1 + πe) (1)

That is, the real interest rate equals the nominal interest rate discounted by the expectation of inflation in time term of the interest rate. Fisher (1933) analyzed the devastating effect of deflation on debts. Nominal debt contracts remained at original principal interest but net worth and income of debtors contracted during deflation. Real interest rates increase during declining inflation. For example, if the interest rate is 3 percent and prices decline 0.2 percent, equation (1) calculates the real interest rate as:

(1 +0.03)/(1 – 0.02) = 1.03/(0.998) = 1.032

That is, the real rate of interest is (1.032 – 1) 100 or 3.2 percent. If inflation were 2 percent, the real rate of interest would be 0.98 percent, or about 1.0 percent {[(1.03/1.02) -1]100 = 0.98%}.

The yield of the one-year Treasury security was quoted in the Wall Street Journal at 0.114 percent on Fri May 17, 2013 (http://online.wsj.com/mdc/page/marketsdata.html?mod=WSJ_topnav_marketdata_main). The expected rate of inflation πe in the next twelve months is not observed. Assume that it would be equal to the rate of inflation in the past twelve months estimated by the Bureau of Economic Analysis (BLS) at 1.1 percent (http://www.bls.gov/cpi/). The real rate of interest would be obtained as follows:

(1 + 0.00114)/(1 + 0.011) = (1 + rr) = 0.9902

That is, ir is equal to 1 – 0.9902 or minus 0.98 percent. Investing in a one-year Treasury security results in a loss of 0.98 percent relative to inflation. The objective of unconventional monetary policy of zero interest rates is to induce consumption and investment because of the loss to inflation of riskless financial assets. Policy would be truly irresponsible if it intended to increase inflationary expectations or πe. The result could be the same rate of unemployment with higher inflation (Kydland and Prescott 1977).

Current focus is on tapering quantitative easing by the Federal Open Market Committee (FOMC). There is sharp distinction between the two measures of unconventional monetary policy: (1) fixing of the overnight rate of fed funds at 0 to ¼ percent; and (2) outright purchase of Treasury and agency securities and mortgage-backed securities for the balance sheet of the Federal Reserve. Market are overreacting to the so-called “paring” of outright purchases of $85 billion of securities per month for the balance sheet of the Fed. What is truly important is the fixing of the overnight fed funds at 0 to ¼ percent for which there is no end in sight as evident in the FOMC statement for Oct 30, 2013 (http://www.federalreserve.gov/newsevents/press/monetary/20131030a.htm):

“To support continued progress toward maximum employment and price stability, the Committee today reaffirmed its view that a highly accommodative stance of monetary policy will remain appropriate for a considerable time after the asset purchase program ends and the economic recovery strengthens. In particular, the Committee decided to keep the target range for the federal funds rate at 0 to 1/4 percent and currently anticipates that this exceptionally low range for the federal funds rate will be appropriate at least as long as the unemployment rate remains above 6-1/2 percent, inflation between one and two years ahead is projected to be no more than a half percentage point above the Committee's 2 percent longer-run goal, and longer-term inflation expectations continue to be well anchored” (emphasis added).

There is a critical phrase in the statement of Sep 19, 2013 (http://www.federalreserve.gov/newsevents/press/monetary/20130918a.htm): “but mortgage rates have risen further.” Did the increase of mortgage rates influence the decision of the FOMC not to taper? Is FOMC “communication” and “guidance” successful?

At the confirmation hearing on nomination for Chair of the Board of Governors of the Federal Reserve System, Vice Chair Yellen (2013Nov14 http://www.federalreserve.gov/newsevents/testimony/yellen20131114a.htm), states needs and intentions of policy:

“We have made good progress, but we have farther to go to regain the ground lost in the crisis and the recession. Unemployment is down from a peak of 10 percent, but at 7.3 percent in October, it is still too high, reflecting a labor market and economy performing far short of their potential. At the same time, inflation has been running below the Federal Reserve's goal of 2 percent and is expected to continue to do so for some time.

For these reasons, the Federal Reserve is using its monetary policy tools to promote a more robust recovery. A strong recovery will ultimately enable the Fed to reduce its monetary accommodation and reliance on unconventional policy tools such as asset purchases. I believe that supporting the recovery today is the surest path to returning to a more normal approach to monetary policy.”

In his classic restatement of the Keynesian demand function in terms of “liquidity preference as behavior toward risk,” James Tobin (http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/1981/tobin-bio.html) identifies the risks of low interest rates in terms of portfolio allocation (Tobin 1958, 86):

“The assumption that investors expect on balance no change in the rate of interest has been adopted for the theoretical reasons explained in section 2.6 rather than for reasons of realism. Clearly investors do form expectations of changes in interest rates and differfrom each other in their expectations. For the purposes of dynamic theory and of analysis of specific market situations, the theories of sections 2 and 3 are complementary rather than competitive. The formal apparatus of section 3 will serve just as well for a non-zero expected capital gain or loss as for a zero expected value of g. Stickiness of interest rate expectations would mean that the expected value of g is a function of the rate of interest r, going down when r goes down and rising when r goes up. In addition to the rotation of the opportunity locus due to a change in r itself, there would be a further rotation in the same direction due to the accompanying change in the expected capital gain or loss. At low interest rates expectation of capital loss may push the opportunity locus into the negative quadrant, so that the optimal position is clearly no consols, all cash. At the other extreme, expectation of capital gain at high interest rates would increase sharply the slope of the opportunity locus and the frequency of no cash, all consols positions, like that of Figure 3.3. The stickier the investor's expectations, the more sensitive his demand for cash will be to changes in the rate of interest (emphasis added).”

Tobin (1969) provides more elegant, complete analysis of portfolio allocation in a general equilibrium model. The major point is equally clear in a portfolio consisting of only cash balances and a perpetuity or consol. Let g be the capital gain, r the rate of interest on the consol and re the expected rate of interest. The rates are expressed as proportions. The price of the consol is the inverse of the interest rate, (1+re). Thus, g = [(r/re) – 1]. The critical analysis of Tobin is that at extremely low interest rates there is only expectation of interest rate increases, that is, dre>0, such that there is expectation of capital losses on the consol, dg<0. Investors move into positions combining only cash and no consols. Valuations of risk financial assets would collapse in reversal of long positions in carry trades with short exposures in a flight to cash. There is no exit from a central bank created liquidity trap without risks of financial crash and another global recession. The net worth of the economy depends on interest rates. In theory, “income is generally defined as the amount a consumer unit could consume (or believe that it could) while maintaining its wealth intact” (Friedman 1957, 10). Income, Y, is a flow that is obtained by applying a rate of return, r, to a stock of wealth, W, or Y = rW (Ibid). According to a subsequent statement: “The basic idea is simply that individuals live for many years and that therefore the appropriate constraint for consumption is the long-run expected yield from wealth r*W. This yield was named permanent income: Y* = r*W” (Darby 1974, 229), where * denotes permanent. The simplified relation of income and wealth can be restated as:

W = Y/r (10

Equation (1) shows that as r goes to zero, r→0, W grows without bound, W→∞. Unconventional monetary policy lowers interest rates to increase the present value of cash flows derived from projects of firms, creating the impression of long-term increase in net worth. An attempt to reverse unconventional monetary policy necessarily causes increases in interest rates, creating the opposite perception of declining net worth. As r→∞, W = Y/r →0. There is no exit from unconventional monetary policy without increasing interest rates with resulting pain of financial crisis and adverse effects on production, investment and employment.

The argument that anemic population growth causes “secular stagnation” in the US (Hansen 1938, 1939, 1941) is as misplaced currently as in the late 1930s (for early dissent see Simons 1942). There is currently population growth in the ages of 16 to 24 years but not enough job creation and discouragement of job searches for all ages (http://cmpassocregulationblog.blogspot.com/2013/11/risks-of-zero-interest-rates-world.html). This is merely another case of theory without reality with dubious policy proposals.

In delivering the biannual report on monetary policy (Board of Governors 2013Jul17), Chairman Bernanke (2013Jul17) advised Congress that:

“Instead, we are providing additional policy accommodation through two distinct yet complementary policy tools. The first tool is expanding the Federal Reserve's portfolio of longer-term Treasury securities and agency mortgage-backed securities (MBS); we are currently purchasing $40 billion per month in agency MBS and $45 billion per month in Treasuries. We are using asset purchases and the resulting expansion of the Federal Reserve's balance sheet primarily to increase the near-term momentum of the economy, with the specific goal of achieving a substantial improvement in the outlook for the labor market in a context of price stability. We have made some progress toward this goal, and, with inflation subdued, we intend to continue our purchases until a substantial improvement in the labor market outlook has been realized. We are relying on near-zero short-term interest rates, together with our forward guidance that rates will continue to be exceptionally low--our second tool--to help maintain a high degree of monetary accommodation for an extended period after asset purchases end, even as the economic recovery strengthens and unemployment declines toward more-normal levels. In appropriate combination, these two tools can provide the high level of policy accommodation needed to promote a stronger economic recovery with price stability.

The Committee's decisions regarding the asset purchase program (and the overall stance of monetary policy) depend on our assessment of the economic outlook and of the cumulative progress toward our objectives. Of course, economic forecasts must be revised when new information arrives and are thus necessarily provisional.”

Friedman (1953) argues there are three lags in effects of monetary policy: (1) between the need for action and recognition of the need; (2) the recognition of the need and taking of actions; and (3) taking of action and actual effects. Friedman (1953) finds that the combination of these lags with insufficient knowledge of the current and future behavior of the economy causes discretionary economic policy to increase instability of the economy or standard deviations of real income σy and prices σp. Policy attempts to circumvent the lags by policy impulses based on forecasts. We are all naïve about forecasting. Data are available with lags and revised to maintain high standards of estimation. Policy simulation models estimate economic relations with structures prevailing before simulations of policy impulses such that parameters change as discovered by Lucas (1977). Economic agents adjust their behavior in ways that cause opposite results from those intended by optimal control policy as discovered by Kydland and Prescott (1977). Advance guidance attempts to circumvent expectations by economic agents that could reverse policy impulses but is of dubious effectiveness. There is strong case for using rules instead of discretionary authorities in monetary policy (http://cmpassocregulationblog.blogspot.com/search?q=rules+versus+authorities).

The key policy is maintaining fed funds rate between 0 and ¼ percent. An increase in fed funds rates could cause flight out of risk financial markets worldwide. There is no exit from this policy without major financial market repercussions. Indefinite financial repression induces carry trades with high leverage, risks and illiquidity. A competing event is the high level of valuations of risk financial assets (http://cmpassocregulationblog.blogspot.com/2013/01/peaking-valuation-of-risk-financial.html). Matt Jarzemsky, writing on “Dow industrials set record,” on Mar 5, 2013, published in the Wall Street Journal (http://professional.wsj.com/article/SB10001424127887324156204578275560657416332.html), analyzes that the DJIA broke the closing high of 14,164.53 set on Oct 9, 2007, and subsequently also broke the intraday high of 14,198.10 reached on Oct 11, 2007. The DJIA closed at 16,020.20

on Fri Nov 29, 2013, which is higher by 13.1 percent than the value of 14,164.53 reached on Oct 9, 2007 and higher by 12.8 percent than the value of 14,198.10 reached on Oct 11, 2007. Values of risk financial are approaching or exceeding historical highs.

The DJIA closed at 16,064.77 on Fri Nov 22, 2013, which is higher by 13.4 percent than the value of 14,164.53 reached on Oct 9, 2007 and higher by 13.1 percent than the value of 14,198.10 reached on Oct 11, 2007. Values of risk financial are approaching or exceeding historical highs.

Jon Hilsenrath, writing on “Jobs upturn isn’t enough to satisfy Fed,” on Mar 8, 2013, published in the Wall Street Journal (http://professional.wsj.com/article/SB10001424127887324582804578348293647760204.html), finds that much stronger labor market conditions are required for the Fed to end quantitative easing. Unconventional monetary policy with zero interest rates and quantitative easing is quite difficult to unwind because of the adverse effects of raising interest rates on valuations of risk financial assets and home prices, including the very own valuation of the securities held outright in the Fed balance sheet. Gradual unwinding of 1 percent fed funds rates from Jun 2003 to Jun 2004 by seventeen consecutive increases of 25 percentage points from Jun 2004 to Jun 2006 to reach 5.25 percent caused default of subprime mortgages and adjustable-rate mortgages linked to the overnight fed funds rate. The zero interest rate has penalized liquidity and increased risks by inducing carry trades from zero interest rates to speculative positions in risk financial assets. There is no exit from zero interest rates without provoking another financial crash.

The carry trade from zero interest rates to leveraged positions in risk financial assets had proved strongest for commodity exposures but US equities have regained leadership. The DJIA has increased 65.4 percent since the trough of the sovereign debt crisis in Europe on Jul 2, 2010 to Dec 6, 2013; S&P 500 has gained 76.5 percent and DAX 61.8 percent. Before the current round of risk aversion, almost all assets in the column “∆% Trough to 12/6/13” had double digit gains relative to the trough around Jul 2, 2010 followed by negative performance but now some valuations of equity indexes show varying behavior. China’s Shanghai Composite is 6.1 percent below the trough. Japan’s Nikkei Average is 73.4 percent above the trough. DJ Asia Pacific TSM is 24.7 percent above the trough. Dow Global is 42.1 percent above the trough. STOXX 50 of 50 blue-chip European equities (http://www.stoxx.com/indices/index_information.html?symbol=sx5E) is 23.2 percent above the trough. NYSE Financial Index is 47.0 percent above the trough. DJ UBS Commodities is 1.1 percent above the trough. DAX index of German equities (http://www.bloomberg.com/quote/DAX:IND) is 61.8 percent above the trough. Japan’s Nikkei Average is 73.4 percent above the trough on Aug 31, 2010 and 34.3 percent above the peak on Apr 5, 2010. The Nikkei Average closed at 15,299.86 on Fri Dec 6, 2013 (http://professional.wsj.com/mdc/public/page/marketsdata.html?mod=WSJ_PRO_hps_marketdata), which is 49.2 percent higher than 10,254.43 on Mar 11, 2011, on the date of the Tōhoku or Great East Japan Earthquake/tsunami. Global risk aversion erased the earlier gains of the Nikkei. The dollar depreciated by 15.0 percent relative to the euro and even higher before the new bout of sovereign risk issues in Europe. The column “∆% week to 12/6/13” in Table VI-4 shows increase of 0.7 percent in the week for China’s Shanghai Composite. DJ Asia Pacific decreased 1.6 percent. NYSE Financial decreased 0.9 percent in the week. DJ UBS Commodities increased 0.9 percent. Dow Global decreased 1.3 percent in the week of Dec 6, 2013. The DJIA decreased 0.4 percent and S&P 500 changed 0.0 percent. DAX of Germany decreased 2.5 percent. STOXX 50 decreased 2.4 percent. The USD depreciated 0.8 percent. There are still high uncertainties on European sovereign risks and banking soundness, US and world growth slowdown and China’s growth tradeoffs. Sovereign problems in the “periphery” of Europe and fears of slower growth in Asia and the US cause risk aversion with trading caution instead of more aggressive risk exposures. There is a fundamental change in Table VI-4 from the relatively upward trend with oscillations since the sovereign risk event of Apr-Jul 2010. Performance is best assessed in the column “∆% Peak to 12/6/13” that provides the percentage change from the peak in Apr 2010 before the sovereign risk event to Dec 6, 2013. Most risk financial assets had gained not only relative to the trough as shown in column “∆% Trough to 12/6/13” but also relative to the peak in column “∆% Peak to 12/6/13.” There are now several equity indexes above the peak in Table VI-4: DJIA 43.0 percent, S&P 500 48.3 percent, DAX 44.9 percent, Dow Global 15.9 percent, DJ Asia Pacific 9.2 percent, NYSE Financial Index (http://www.nyse.com/about/listed/nykid.shtml) 17.1 percent, Nikkei Average 34.3 percent and STOXX 50 4.4 percent. There is only one equity index below the peak: Shanghai Composite by 29.3 percent. DJ UBS Commodities Index is now 13.5 percent below the peak. The US dollar strengthened 9.4 percent relative to the peak. The factors of risk aversion have adversely affected the performance of risk financial assets. The performance relative to the peak in Apr 2010 is more important than the performance relative to the trough around early Jul 2010 because improvement could signal that conditions have returned to normal levels before European sovereign doubts in Apr 2010. Alexandra Scaggs, writing on “Tepid profits, roaring stocks,” on May 16, 2013, published in the Wall Street Journal (http://online.wsj.com/article/SB10001424127887323398204578487460105747412.html), analyzes stabilization of earnings growth: 70 percent of 458 reporting companies in the S&P 500 stock index reported earnings above forecasts but sales fell 0.2 percent relative to forecasts of increase of 0.5 percent. Paul Vigna, writing on “Earnings are a margin story but for how long,” on May 17, 2013, published in the Wall Street Journal (http://blogs.wsj.com/moneybeat/2013/05/17/earnings-are-a-margin-story-but-for-how-long/), analyzes that corporate profits increase with stagnating sales while companies manage costs tightly. More than 90 percent of S&P components reported moderate increase of earnings of 3.7 percent in IQ2013 relative to IQ2012 with decline of sales of 0.2 percent. Earnings and sales have been in declining trend. In IVQ2009, growth of earnings reached 104 percent and sales jumped 13 percent. Net margins reached 8.92 percent in IQ2013, which is almost the same at 8.95 percent in IIIQ2006. Operating margins are 9.58 percent. There is concern by market participants that reversion of margins to the mean could exert pressure on earnings unless there is more accelerated growth of sales. Vigna (op. cit.) finds sales growth limited by weak economic growth. Kate Linebaugh, writing on “Falling revenue dings stocks,” on Oct 20, 2012, published in the Wall Street Journal (http://professional.wsj.com/article/SB10000872396390444592704578066933466076070.html?mod=WSJPRO_hpp_LEFTTopStories), identifies a key financial vulnerability: falling revenues across markets for United States reporting companies. Global economic slowdown is reducing corporate sales and squeezing corporate strategies. Linebaugh quotes data from Thomson Reuters that 100 companies of the S&P 500 index have reported declining revenue only 1 percent higher in Jun-Sep 2012 relative to Jun-Sep 2011 but about 60 percent of the companies are reporting lower sales than expected by analysts with expectation that revenue for the S&P 500 will be lower in Jun-Sep 2012 for the entities represented in the index. Results of US companies are likely repeated worldwide. Future company cash flows derive from investment projects. In IQ1980, gross private domestic investment in the US was $951.6 billion of 2009 dollars, growing to $1,143.0 billion in IVQ1986 or 20.1 percent. Real gross private domestic investment in the US increased 0.7 percent from $2,605.2 billion of 2009 dollars in IVQ2007 to $2,624.6 billion in IIIQ2013. As shown in Table IAI-2, real private fixed investment fell 3.7 percent from $2,586.3 billion of 2009 dollars in IVQ2007 to $2,490.7 billion in IIIQ2013. Growth of real private investment is mediocre for all but four quarters from IIQ2011 to IQ2012 (Section I and earlier http://cmpassocregulationblog.blogspot.com/2013/11/global-financial-risk-mediocre-united.html). The investment decision of United States corporations has been fractured in the current economic cycle in preference of cash. Corporate profits with IVA and CCA fell $26.6 billion in IQ2013 after increasing $34.9 billion in IVQ2012 and $13.9 billion in IIIQ2012. Corporate profits with IVA and CCA rebounded with $66.8 billion in IIQ2013 and $38.3 billion in IIIQ2013. Profits after tax with IVA and CCA fell $1.7 billion in IQ2013 after increasing $40.8 billion in IVQ2012 and $4.5 billion in IIIQ2012. In IIQ2013, profits after tax with IVA and CCA increased $56.9 billion and $43.0 billion in IIIQ2013. Anticipation of higher taxes in the “fiscal cliff” episode caused increase of $120.9 billion in net dividends in IVQ2012 followed with adjustment in the form of decrease of net dividends by $103.8 billion in IQ2013, rebounding with $273.5 billion in IIQ2013. Net dividends fell at $179.7 billion in IIIQ2013. There is similar decrease of $80.1 billion in undistributed profits with IVA and CCA in IVQ2012 followed by increase of $102.1 billion in IQ2013 and decline of $216.6 billion in IIQ2013. Undistributed profits with IVA and CCA rose at $222.8 billion in IIIQ2013. Undistributed profits of US corporations swelled 394.4 percent from $107.7 billion IQ2007 to $532.5 billion in IIIQ2013 and changed signs from minus $55.9 billion in billion in IVQ2007 (Section IA2). In IQ2013, corporate profits with inventory valuation and capital consumption adjustment fell $26.6 billion relative to IVQ2012, from $2047.2 billion to $2020.6 billion at the quarterly rate of minus 1.3 percent. In IIQ2013, corporate profits with IVA and CCA increased $66.8 billion from $2020.6 billion in IQ2013 to $2087.4 billion at the quarterly rate of 3.3 percent. Corporate profits with IVA and CCA increased $38.3 billion from $2087.4 billion in IIQ2013 to $2125.7 billion in IIIQ2013 at the annual rate of 1.8 percent. (http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp3q13_2nd.pdf). Uncertainty originating in fiscal, regulatory and monetary policy causes wide swings in expectations and decisions by the private sector with adverse effects on investment, real economic activity and employment. The investment decision of US business is fractured. The basic valuation equation that is also used in capital budgeting postulates that the value of stocks or of an investment project is given by:

clip_image003

Where Rτ is expected revenue in the time horizon from τ =1 to T; Cτ denotes costs; and ρ is an appropriate rate of discount. In words, the value today of a stock or investment project is the net revenue, or revenue less costs, in the investment period from τ =1 to T discounted to the present by an appropriate rate of discount. In the current weak economy, revenues have been increasing more slowly than anticipated in investment plans. An increase in interest rates would affect discount rates used in calculations of present value, resulting in frustration of investment decisions. If V represents value of the stock or investment project, as ρ → ∞, meaning that interest rates increase without bound, then V → 0, or

clip_image003

declines. Equally, decline in expected revenue from the stock or project, Rτ, causes decline in valuation. An intriguing issue is the difference in performance of valuations of risk financial assets and economic growth and employment. Paul A. Samuelson (http://www.nobelprize.org/nobel_prizes/economics/laureates/1970/samuelson-bio.html) popularized the view of the elusive relation between stock markets and economic activity in an often-quoted phrase “the stock market has predicted nine of the last five recessions.” In the presence of zero interest rates forever, valuations of risk financial assets are likely to differ from the performance of the overall economy. The interrelations of financial and economic variables prove difficult to analyze and measure.

Table VI-4, Stock Indexes, Commodities, Dollar and 10-Year Treasury  

 

Peak

Trough

∆% to Trough

∆% Peak to 12/6/

/13

∆% Week 12/6/13

∆% Trough to 12/6/

13

DJIA

4/26/
10

7/2/10

-13.6

43.0

-0.4

65.4

S&P 500

4/23/
10

7/20/
10

-16.0

48.3

0.0

76.5

NYSE Finance

4/15/
10

7/2/10

-20.3

17.1

-0.9

47.0

Dow Global

4/15/
10

7/2/10

-18.4

15.9

-1.3

42.1

Asia Pacific

4/15/
10

7/2/10

-12.5

9.2

-1.6

24.7

Japan Nikkei Aver.

4/05/
10

8/31/
10

-22.5

34.3

-2.3

73.4

China Shang.

4/15/
10

7/02
/10

-24.7

-29.3

0.7

-6.1

STOXX 50

4/15/10

7/2/10

-15.3

4.4

-2.4

23.2

DAX

4/26/
10

5/25/
10

-10.5

44.9

-2.5

61.8

Dollar
Euro

11/25 2009

6/7
2010

21.2

9.4

-0.8

-15.0

DJ UBS Comm.

1/6/
10

7/2/10

-14.5

-13.5

0.9

1.1

10-Year T Note

4/5/
10

4/6/10

3.986

2.784

2.858

 

T: trough; Dollar: positive sign appreciation relative to euro (less dollars paid per euro), negative sign depreciation relative to euro (more dollars paid per euro)

Source: http://professional.wsj.com/mdc/page/marketsdata.html?mod=WSJ_hps_marketdata

ESII Mediocre United States Economic Growth. The US is experiencing the first expansion from a recession after World War II with stressing socioeconomic conditions:

Valuations of risk financial assets approach historical highs. Long-term economic performance in the United States consisted of trend growth of GDP at 3 percent per year and of per capita GDP at 2 percent per year as measured for 1870 to 2010 by Robert E Lucas (2011May). The economy returned to trend growth after adverse events such as wars and recessions. The key characteristic of adversities such as recessions was much higher rates of growth in expansion periods that permitted the economy to recover output, income and employment losses that occurred during the contractions. Over the business cycle, the economy compensated the losses of contractions with higher growth in expansions to maintain trend growth of GDP of 3 percent and of GDP per capita of 2 percent. US economic growth has been at only 2.3 percent on average in the cyclical expansion in the 17 quarters from IIIQ2009 to IIIQ2013. Boskin (2010Sep) measures that the US economy grew at 6.2 percent in the first four quarters and 4.5 percent in the first 12 quarters after the trough in the second quarter of 1975; and at 7.7 percent in the first four quarters and 5.8 percent in the first 12 quarters after the trough in the first quarter of 1983 (Professor Michael J. Boskin, Summer of Discontent, Wall Street Journal, Sep 2, 2010 http://professional.wsj.com/article/SB10001424052748703882304575465462926649950.html). There are new calculations using the revision of US GDP and personal income data since 1929 by the Bureau of Economic Analysis (BEA) (http://bea.gov/iTable/index_nipa.cfm http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp3q13_2nd.pdf http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp3q13_adv.pdf

http://bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_adv.pdf http://bea.gov/newsreleases/national/pi/2013/pdf/pi0613.pdf) and the second estimate of GDP for IIIQ2013 (http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp3q13_2nd.pdf). The average of 7.7 percent in the first four quarters of major cyclical expansions is in contrast with the rate of growth in the first four quarters of the expansion from IIIQ2009 to IIQ2010 of only 2.7 percent obtained by diving GDP of $14,738.0 billion in IIQ2010 by GDP of $14,356.9 billion in IIQ2009 {[$14,738.0/$14,356.9 -1]100 = 2.7%], or accumulating the quarter on quarter growth rates (Section I and earlier http://cmpassocregulationblog.blogspot.com/2013/11/global-financial-risk-mediocre-united.html). The expansion from IQ1983 to IVQ1985 was at the average annual growth rate of 5.7 percent, 5.4 percent from IQ1983 to IIIQ1986 and at 7.8 percent from IQ1983 to IVQ1983 (Section I and earlier http://cmpassocregulationblog.blogspot.com/2013/11/global-financial-risk-mediocre-united.html). As a result, there are 28.1 million unemployed or underemployed in the United States for an effective unemployment rate of 17.2 percent (Section II and earlier) http://cmpassocregulationblog.blogspot.com/2013/11/global-financial-risk-mediocre-united.html).

The economy of the US can be summarized in growth of economic activity or GDP as decelerating from mediocre growth of 2.5 percent on an annual basis in 2010 to 1.8 percent in 2011 to 2.8 percent in 2012. The following calculations show that actual growth is around 1.9 to 2.4 percent per year. This rate is well below 3 percent per year in trend from 1870 to 2010, which the economy of the US always attained for entire cycles in expansions after events such as wars and recessions (Lucas 2011May).

Revisions and enhancements of United States GDP and personal income accounts by the Bureau of Economic Analysis (BEA) (http://bea.gov/iTable/index_nipa.cfm http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp3q13_2nd.pdf http://bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_adv.pdf http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_2nd.pdf http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_3rd.pdf http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0713.pdf http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0813.pdf http://bea.gov/newsreleases/national/pi/2013/pdf/pi0613.pdf http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp3q13_adv.pdf) provide important information on long-term growth and cyclical behavior. Table Summary provides relevant data.

  1. Long-term. US GDP grew at the average yearly rate of 3.3 percent from 1929 to 2012 and at 3.2 percent from 1947 to 2012. There were periodic contractions or recessions in this period but the economy grew at faster rates in the subsequent expansions, maintaining long-term economic growth at trend.
  2. Cycles. The combined contraction of GDP in the two almost consecutive recessions in the early 1980s is 4.7 percent. The contraction of US GDP from IVQ2007 to IIQ2009 during the global recession was 4.3 percent. The critical difference in the expansion is growth at average 7.8 percent in annual equivalent in the first four quarters of recovery from IQ1983 to IVQ1983. The average rate of growth of GDP in four cyclical expansions in the postwar period is 7.7 percent. In contrast, the rate of growth in the first four quarters from IIIQ2009 to IIQ2010 was only 2.7 percent. Average annual equivalent growth in the expansion from IQ1983 to IIIQ1986 was 5.4 percent. In contrast, average annual equivalent growth in the expansion from IIIQ2009 to IIIQ2013 was only 2.3 percent. The US appears to have lost its dynamism of income growth and employment creation.

Table Summary, Long-term and Cyclical Growth of GDP, Real Disposable Income and Real Disposable Income per Capita

 

GDP

 

Long-Term

   

1929-2012

3.3

 

1947-2012

3.2

 

Cyclical Contractions ∆%

   

IQ1980 to IIIQ1980, IIIQ1981 to IVQ1982

-4.7

 

IVQ2007 to IIQ2009

-4.3

 

Cyclical Expansions Average Annual Equivalent ∆%

   

IQ1983 to IVQ1985

IQ1983-IQ1986

IQ1983-IIIQ1986

IQ1983-IV1986

IQ1983-IQ1987

5.9

5.7

5.4

5.2

5.0

 

First Four Quarters IQ1983 to IVQ1983

7.8

 

IIIQ2009 to IIIQ2013

2.3

 

First Four Quarters IIIQ2009 to IIQ2010

2.7

 
 

Real Disposable Income

Real Disposable Income per Capita

Long-Term

   

1929-2012

3.2

2.0

1947-1999

3.7

2.3

Whole Cycles

   

1980-1989

3.5

2.6

2006-2012

1.4

0.6

Source: Bureau of Economic Analysis http://www.bea.gov/iTable/index_nipa.cfm http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_3rd.pdf http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0813.pdf

http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp3q13_adv.pdf

http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp3q13_2nd.pdf

The revisions and enhancements of United States GDP and personal income accounts by the Bureau of Economic Analysis (BEA) (http://bea.gov/iTable/index_nipa.cfm http://bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_adv.pdf http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_2nd.pdf http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_3rd.pdf http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0713.pdf http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0813.pdf http://bea.gov/newsreleases/national/pi/2013/pdf/pi0613.pdf http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp3q13_adv.pdf) also provide critical information in assessing the current rhythm of US economic growth. The economy appears to be moving at a pace from 1.9 to 2.4 percent per year. Table Summary GDP provides the data.

1. Average Annual Growth in the Past Six Quarters. GDP growth in the four quarters of 2012 and the first three quarters of 2013 accumulated to 3.8 percent. This growth is equivalent to 2.1 percent per year, obtained by dividing GDP in IIIQ2013 of $15,819.0 billion by GDP in IVQ2011 of $15,242.1 billion and compounding by 4/7: {[($15,819.0/$15,242.1)4/6 -1]100 = 2.1.

2. Average Annual Growth in the First Three Quarters of 2013. GDP growth in the first three quarters of 2013 accumulated to 1.6 percent that is equivalent to 2.4 percent in a year. This is obtained by dividing GDP in IIIQ2013 of $15,819.0 by GDP in IVQ2012 of $15,539.6 and compounding by 4/3: {[($15,819.0/$15,539.6)4/3 -1]100 = 2.4%}. The US economy grew 1.8 percent in IIIQ2013 relative to the same quarter a year earlier in IIIQ2012. Another important revelation of the revisions and enhancements is that GDP was flat in IVQ2012, which is just at the borderline of contraction. The rate of growth of GDP in the second estimate of IIIQ2013 is 3.6 percent in seasonally adjusted annual rate (SAAR). Inventory accumulation contributed 1.68 percentage points to this rate of growth. The actual rate without this impulse of unsold inventories would have been 1.92 percent, or 0.5 percent in IIIQ2013, such that annual equivalent growth in 2013 is closer to 1.9 percent {[(1.003)(1.006)(1.005)4/3-1]100 = 1.9%}, compounding the quarterly rates and converting into annual equivalent.

Table Summary GDP, US, Real GDP and Percentage Change Relative to IVQ2007 and Prior Quarter, Billions Chained 2005 Dollars and ∆%

 

Real GDP, Billions Chained 2009 Dollars

∆% Relative to IVQ2007

∆% Relative to Prior Quarter

∆%
over
Year Earlier

IVQ2007

14,996.1

NA

NA

1.9

IVQ2011

15,242.1

1.6

1.2

2.0

IQ2012

15,381.6

2.6

0.9

3.3

IIQ2012

15,427.7

2.9

0.3

2.8

IIIQ2012

15,534.0

3.6

0.7

3.1

IVQ2012

15,539.6

3.6

0.0

2.0

IQ2013

15,583.9

3.9

0.3

1.3

IIQ2013

15,679.7

4.6

0.6

1.6

IIIQ2013

15,819.0

5.5

0.9

1.8

Cumulative ∆% IQ2012 to IIIQ2013

3.8

 

3.8

 

Annual Equivalent ∆%

2.1

 

2.1

 

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp3q13_2nd.pdf

Table I-5 shows the extraordinary contrast between the mediocre average annual equivalent growth rate of 2.3 percent of the US economy in the seventeen quarters of the current cyclical expansion from IIIQ2009 to IIIQ2013 and the average of 5.7 percent in the first thirteen quarters of expansion from IQ1983 to IQ1986, 5.3 percent in the first fifteen quarters of expansion from IQ1983 to IIIQ1986, 5.2 percent in the first sixteen quarters of expansion from IQ1983 to IVQ1986 and 5.0 percent in the first seventeen quarters of expansion from IQ1983 to IQ1987. The line “average first four quarters in four expansions” provides the average growth rate of 7.7 percent with 7.8 percent from IIIQ1954 to IIQ1955, 9.2 percent from IIIQ1958 to IIQ1959, 6.1 percent from IIIQ1975 to IIQ1976 and 7.8 percent from IQ1983 to IVQ1983. The United States missed this opportunity of high growth in the initial phase of recovery. Boskin (2010Sep) measures that the US economy grew at 6.2 percent in the first four quarters and 4.5 percent in the first 12 quarters after the trough in the second quarter of 1975; and at 7.7 percent in the first four quarters and 5.8 percent in the first 12 quarters after the trough in the first quarter of 1983 (Professor Michael J. Boskin, Summer of Discontent, Wall Street Journal, Sep 2, 2010 http://professional.wsj.com/article/SB10001424052748703882304575465462926649950.html). Table I-5 provides an average of 7.7 percent in the first four quarters of major cyclical expansions while the rate of growth in the first four quarters of the expansion from IIIQ2009 to IIQ2010 is only 2.7 percent obtained by diving GDP of $14,738.0 billion in IIQ2010 by GDP of $14,356.9 billion in IIQ2009 {[$14,738.0/$14,356.9 -1]100 = 2.7%], or accumulating the quarter on quarter growth rates. As a result, there are 28.1 million unemployed or underemployed in the United States for an effective unemployment rate 17.2 percent (Section II and earlier http://cmpassocregulationblog.blogspot.com/2013/11/global-financial-risk-mediocre-united.html). BEA data show the US economy in standstill with annual growth of 2.4 percent in 2010 decelerating to 1.8 percent annual growth in 2011 and 2.8 percent in 2012 (http://www.bea.gov/iTable/index_nipa.cfm) The expansion from IQ1983 to IVQ1985 was at the average annual growth rate of 5.7 percent, 5.2 percent from IQ1983 to IVQ1986 and at 7.8 percent from IQ1983 to IVQ1983. GDP growth in the first three quarters of 2013 accumulated to 1.8 percent that is equivalent to 2.4 percent in a year. This is obtained by dividing GDP in IIIQ2013 of 15,819.0 by GDP in IVQ2012 of $15,539.6 and compounding by 4/3: {[(15,819.0/$15,539.6)4/2 -1]100 = 2.4 %}. The US economy grew 1.8 percent in IIIQ2013 relative to the same quarter a year earlier in IIIQ2012. Another important revelation of the revisions and enhancements is that GDP was flat in IVQ2012, just at the borderline of contraction. The rate of growth of GDP in the second estimate of IIIQ2013 is 3.6 percent in seasonally adjusted annual rate (SAAR). Inventory accumulation contributed 1.68 percentage points to this rate of growth. The actual rate without this impulse of unsold inventories would have been 1.92 percent, or 0.5 percent in IIIQ2013, such that annual equivalent growth in 2013 is closer to 1.9 percent {[(1.003)(1.006)(1.005)4/3-1]100 = 1.9%}, compounding the quarterly rates and converting into annual equivalent.

Table I-5, US, Number of Quarters, Cumulative Growth and Average Annual Equivalent Growth Rate in Cyclical Expansions

 

Number
of
Quarters

Cumulative Growth

∆%

Average Annual Equivalent Growth Rate

IIIQ 1954 to IQ1957

11

12.8

4.5

First Four Quarters IIIQ1954 to IIQ1955

4

7.8

 

IIQ1958 to IIQ1959

5

10.0

7.9

First Four Quarters

IIIQ1958 to IIQ1959

4

9.2

 

IIQ1975 to IVQ1976

8

8.3

4.1

First Four Quarters IIIQ1975 to IIQ1976

4

6.1

 

IQ1983-IQ1986

IQ1983-IIIQ1986

IQ1983-IVQ1986

IQ1983-IQ1987

13

15

16

17

19.9

21.6

22.3

23.1

5.7

5.4

5.2

5.0

First Four Quarters IQ1983 to IVQ1983

4

7.8

 

Average First Four Quarters in Four Expansions*

 

7.7

 

IIIQ2009 to IIIQ2013

17

10.2

2.3

First Four Quarters IIIQ2009 to IIQ2010

 

2.7

 

*First Four Quarters: 7.8% IIIQ1954-IIQ1955; 9.2% IIIQ1958-IIQ1959; 6.1% IIIQ1975-IIQ1976; 7.8% IQ1983-IVQ1983

Source: Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm Reference Cycles National Bureau of Economic Research http://www.nber.org/cycles/cyclesmain.html

Chart I-8 shows US real quarterly GDP growth from 1980 to 1989. The economy contracted during the recession and then expanded vigorously throughout the 1980s, rapidly eliminating the unemployment caused by the contraction.

clip_image006

Chart I-8, US, Real GDP, 1980-1989

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart I-9 shows the entirely different situation of real quarterly GDP in the US between 2007 and 2012. The economy has underperformed during the first sixteen quarters of expansion for the first time in the comparable contractions since the 1950s. The US economy is now in a perilous standstill.

clip_image007

Chart I-9, US, Real GDP, 2007-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

As shown in Tables I-4 and I-5 above the loss of real GDP in the US during the contraction was 4.3 percent but the gain in the cyclical expansion has been only 10.2 percent (first to the last row in Table I-5), using all latest revisions. As a result, the level of real GDP in IIIQ2013 with the second estimate and revisions is only higher by 5.5 percent than the level of real GDP in IVQ2007. Growth at trend of 3.0 percent in the entire cycle as in past cyclical expansions would result in GDP higher by 19.4 percent in IIIQ2013 relative to IVQ2007. Trend GDP would be $17,905.3 billion, which is higher than actual GDP in IIIQ2013 of $15,819.0 billion, for underperformance of $2,086.0 billion. Table I-6 provides in the second column real GDP in billions of chained 2009 dollars. The third column provides the percentage change of the quarter relative to IVQ2007; the fourth column provides the percentage change relative to the prior quarter; and the final fifth column provides the percentage change relative to the same quarter a year earlier. The contraction actually concentrated in two quarters: decline of 2.2 percent in IVQ2008 relative to the prior quarter and decline of 1.4 percent in IQ2009 relative to IVQ2008. The combined fall of GDP in IVQ2008 and IQ2009 was 3.6 percent {[(1-0.022) x (1-0.014) -1]100 = -3.6%}, or {[(IQ2009 $14,372.1)/(IIIQ2008 $14,895.1) – 1]100 = -3.5%} except for rounding. Those two quarters coincided with the worst effects of the financial crisis. GDP fell 0.1 percent in IIQ2009 but grew 0.3 percent in IIIQ2009, which is the beginning of recovery in the cyclical dates of the NBER. Most of the recovery occurred in five successive quarters from IVQ2009 to IVQ2010 of growth of 1.0 percent in IVQ2009, 0.4 percent in IQ2010, 0.9 percent in IIQ2010 and equal growth at 0.7 percent in IIIQ2010 and 0.7 percent in IVQ2010 for cumulative growth in those five quarters of 3.8 percent, obtained by accumulating the quarterly rates {[(1.01 x 1.004 x 1.009 x 1.007 x 1.007) – 1]100 = 3.8%} or {[(IVQ2010 $14,942.4)/(IIIQ2009 $14,402.5) – 1]100 = 3.7%} with minor rounding difference. The economy then stalled during the first half of 2011 with decline of 0.3 percent in IQ2011 and growth of 0.8 percent in IIQ2011 for combined annual equivalent rate of 1.0 percent {(0.997 x 1.008)2}. The economy grew 0.3 percent in IIIQ2011 for annual equivalent growth of 1.1 percent in the first three quarters {[(0.997 x 1.008 x 1.003)4/3 -1]100 = 1.1%}. Growth picked up in IVQ2011 with 1.2 percent relative to IIIQ2011. Growth in a quarter relative to a year earlier in Table I-6 slows from over 2.7 percent during three consecutive quarters from IIQ2010 to IVQ2010 to 2.0 percent in IQ2011, 1.9 percent in IIQ2011, 1.5 percent in IIIQ2011 and 2.0 percent in IVQ2011. As shown below, growth of 1.2 percent in IVQ2011 was partly driven by inventory accumulation. In IQ2012, GDP grew 0.9 percent relative to IVQ2011 and 3.3 percent relative to IQ2011, decelerating to 0.3 percent in IIQ2012 and 2.8 percent relative to IIQ2011 and 0.7 percent in IIIQ2012 and 3.1 percent relative to IIIQ2011 largely because of inventory accumulation and national defense expenditures. Growth was 0.0 percent in IVQ2012 with 2.0 percent relative to a year earlier but mostly because of deduction of 2.00 percentage points of inventory divestment and 1.22 percentage points of reduction of one-time national defense expenditures. Growth was 0.3 percent in IQ2013 and 1.3 percent relative to IQ2012 in large part because of burning savings to consume caused by financial repression of zero interest rates. There is similar growth of 0.6 percent in IIQ2013 and 1.6 percent relative to a year earlier. In IIIQ2013, GDP grew 0.9 percent relative to the prior quarter and 1.8 percent relative to the same quarter a year earlier with inventory accumulation contributing 1.68 percentage points to growth at 3.6 percent SAAR in IIIQ2013. Rates of a quarter relative to the prior quarter capture better deceleration of the economy than rates on a quarter relative to the same quarter a year earlier. The critical question for which there is not yet definitive solution is whether what lies ahead is continuing growth recession with the economy crawling and unemployment/underemployment at extremely high levels or another contraction or conventional recession. Forecasts of various sources continued to maintain high growth in 2011 without taking into consideration the continuous slowing of the economy in late 2010 and the first half of 2011. The sovereign debt crisis in the euro area is one of the common sources of doubts on the rate and direction of economic growth in the US but there is weak internal demand in the US with almost no investment and spikes of consumption driven by burning saving because of financial repression forever in the form of zero interest rates.

Table I-6, US, Real GDP and Percentage Change Relative to IVQ2007 and Prior Quarter, Billions Chained 2005 Dollars and ∆%

 

Real GDP, Billions Chained 2009 Dollars

∆% Relative to IVQ2007

∆% Relative to Prior Quarter

∆%
over
Year Earlier

IVQ2007

14,996.1

NA

NA

1.9

IQ2008

14,895.4

-0.7

-0.7

1.1

IIQ2008

14,969.2

-0.2

0.5

0.9

IIIQ2008

14,895.1

-0.7

-0.5

-0.3

IVQ2008

14,574.6

-2.8

-2.2

-2.8

IQ2009

14,372.1

-4.2

-1.4

-3.5

IIQ2009

14,356.9

-4.3

-0.1

-4.1

IIIQ2009

14,402.5

-4.0

0.3

-3.3

IV2009

14,540.2

-3.0

1.0

-0.2

IQ2010

14,597.7

-2.7

0.4

1.6

IIQ2010

14,738.0

-1.7

0.9

2.7

IIIQ2010

14,839.3

-1.0

0.7

3.0

IVQ2010

14,942.4

-0.4

0.7

2.8

IQ2011

14,894.0

-0.7

-0.3

2.0

IIQ2011

15,011.3

0.1

0.8

1.9

IIIQ2011

15,062.1

0.4

0.3

1.5

IVQ2011

15,242.1

1.6

1.2

2.0

IQ2012

15,381.6

2.6

0.9

3.3

IIQ2012

15,427.7

2.9

0.3

2.8

IIIQ2012

15,534.0

3.6

0.7

3.1

IVQ2012

15,539.6

3.6

0.0

2.0

IQ2013

15,583.9

3.9

0.3

1.3

IIQ2013

15,679.7

4.6

0.6

1.6

IIIQ2013

15,819.0

5.5

0.9

1.8

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Chart I-10 provides the percentage change of real GDP from the same quarter a year earlier from 1980 to 1989. There were two contractions almost in succession in 1980 and from 1981 to 1983. The expansion was marked by initial high rates of growth as in other recession in the postwar US period during which employment lost in the contraction was recovered. Growth rates continued to be high after the initial phase of expansion.

clip_image008

Chart I-10, Percentage Change of Real Gross Domestic Product from Quarter a Year Earlier 1980-1989

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

The experience of recovery after 2009 is not as complete as during the 1980s. Chart I-11 shows the much lower rates of growth in the early phase of the current expansion and sharp decline from an early peak. The US missed the initial high growth rates in cyclical expansions that eliminate unemployment and underemployment.

clip_image009

Chart I-11, Percentage Change of Real Gross Domestic Product from Quarter a Year Earlier 2007-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart I-12 provides growth rates from a quarter relative to the prior quarter during the 1980s. There is the same strong initial growth followed by a long period of sustained growth.

clip_image010

Chart I-12, Percentage Change of Real Gross Domestic Product from Prior Quarter 1980-1989

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart I-13 provides growth rates in a quarter relative to the prior quarter from 2007 to 2013. Growth in the current expansion after IIIQ2009 has not been as strong as in other postwar cyclical expansions.

clip_image011

Chart I-13, Percentage Change of Real Gross Domestic Product from Prior Quarter 2007-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

ESIII Contracting Real Private Fixed Investment. Table IA1-2 provides real private fixed investment at seasonally adjusted annual rates from IVQ2007 to IIQ2013 or for the complete economic cycle. The first column provides the quarter, the second column percentage change relative to IVQ2007, the third column the quarter percentage change in the quarter relative to the prior quarter and the final column percentage change in a quarter relative to the same quarter a year earlier. In IQ1980, gross private domestic investment in the US was $951.6 billion of 2009 dollars, growing to $1,143.0 billion in IVQ1986 or 20.1 percent. Real gross private domestic investment in the US increased 0.7 percent from $2,605.2 billion of 2009 dollars in IVQ2007 to $2,624.6 billion in IIIQ2013. As shown in Table IAI-2, real private fixed investment fell 3.7 percent from $2,586.3 billion of 2009 dollars in IVQ2007 to $2,490.7 billion in IIIQ2013. Growth of real private investment in Table IA1-2 is mediocre for all but four quarters from IIQ2011 to IQ2012.

Table IA1-2, US, Real Private Fixed Investment and Percentage Change Relative to IVQ2007 and Prior Quarter, Billions of Chained 2009 Dollars and ∆%

 

Real PFI, Billions Chained 2009 Dollars

∆% Relative to IVQ2007

∆% Relative to Prior Quarter

∆%
over
Year Earlier

IVQ2007

2586.3

NA

-1.2

-1.4

IQ2008

2539.1

-1.8

-1.8

-3.0

IIQ2008

2503.4

-3.2

-1.4

-4.6

IIIQ2008

2424.1

-6.3

-3.2

-7.1

IV2008

2263.8

-12.5

-6.6

-12.5

IQ2009

2089.3

-19.2

-7.7

-17.7

IIQ2009

2011.0

-22.2

-3.7

-19.7

IIIQ2009

2008.4

-22.3

-0.1

-17.1

IVQ2009

1994.1

-22.9

-0.7

-11.9

IQ2010

1997.9

-22.8

0.2

-4.4

IIQ2010

2062.8

-20.2

3.2

2.6

IIIQ2010

2060.8

-20.3

-0.1

2.6

IVQ2010

2103.1

-18.7

2.1

5.5

IQ2011

2100.7

-18.8

-0.1

5.1

IIQ2011

2144.4

-17.1

2.1

4.0

IIIQ2011

2219.8

-14.2

3.5

7.7

IVQ2011

2273.4

-12.1

2.4

8.1

IQ2012

2320.8

-10.3

2.1

10.5

IIQ2012

2347.9

-9.2

1.2

9.5

IIIQ2012

2363.5

-8.6

0.7

6.5

IVQ2012

2429.1

-6.1

2.8

6.8

IQ2013

2420.0

-6.4

-0.4

4.3

IIQ2013

2458.4

-4.9

1.6

4.7

IIIQ2013

2,490.7

-3.7

1.3

5.4

PFI: Private Fixed Investment

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Chart IA1-3 provides real private fixed investment in billions of chained 2009 dollars from IQ2007 to IIIQ2013. Real private fixed investment has not recovered, stabilizing at a level in IIIQ2013 that is 3.7 percent below the level in IVQ2007.

clip_image012

Chart IA1-3, US, Real Private Fixed Investment, Billions of Chained 2009 Dollars, IQ2007 to IIIQ2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IA1-4 provides real gross private domestic investment in chained dollars of 2009 from 1980 to 1986. Real gross private domestic investment climbed 20.1 percent to $1143.0 billion of 2009 dollars in IVQ1986 above the level of $951.6 billion in IQ1980.

clip_image013

Chart IA1-4, US, Real Gross Private Domestic Investment, Billions of Chained 2009 Dollars at Seasonally Adjusted Annual Rate, 1980-1986

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IA1-5 provides real gross private domestic investment in the United States in billions of dollars of 2009 from 2006 to 2013. Gross private domestic investment reached a level of $2624.6 in IIIQ2013 of that was 0.7 percent higher than the level of $2605.6 billion in IVQ2007 (http://www.bea.gov/iTable/index_nipa.cfm).

clip_image014

Chart IA1-5, US, Real Gross Private Domestic Investment, Billions of Chained 2009 Dollars at Seasonally Adjusted Annual Rate, 2007-2013

Source: US Bureau of Economic Analysis http://www.bea.gov/iTable/index_nipa.cfm

Table IA1-3 provides percentage shares in GDP of gross private domestic investment and its components in IIIQ2013, IIIQ2006 and IIIQ2000. The share of gross private domestic investment in GDP has fallen from 19.8 percent in IIIQ2000 and 19.3 percent in IIIQ2006 to 16.2 percent in IIIQ2013. There are declines in percentage shares in GDP of all components with sharp reduction of residential investment from 4.7 percent in IIIQ2000 and 5.8 percent in IIIQ2006 to 3.2 percent in IIIQ2013. The share of fixed investment in GDP fell from 19.3 percent in IIIQ2000 and 18.7 percent in IIIQ2006 to 15.3 percent in IIIQ2013.

Table IA1-3, Percentage Shares of Gross Private Domestic Investment and Components in Gross Domestic Product, % of GDP, IQ2013

 

IIIQ2013

IIIQ2006

IIIQ2000

Gross Private Domestic Investment

16.2

19.3

19.8

  Fixed Investment

15.3

18.7

19.3

     Nonresidential

12.2

12.9

14.6

          Structures

2.8

3.1

3.2

          Equipment

          and Software

5.5

6.2

7.5

          Intellectual
           Property

3.8

3.7

4.0

     Residential

3.2

5.8

4.7

   Change in Private Inventories

0.9

0.6

0.6

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Broader perspective is provided in Chart IA1-6 with the percentage share of gross private domestic investment in GDP in annual data from 1929 to 2012. There was sharp drop during the current economic cycle with almost no recovery in contrast with sharp recovery after the recessions of the 1980s.

clip_image015

Chart IA1-6, US, Percentage Share of Gross Private Domestic Investment in Gross Domestic Product, Annual, 1929-2012

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IA1-7 provides percentage shares of private fixed investment in GDP with annual data from 1929 to 2012. The sharp contraction after the recessions of the 1980s was followed by sustained recovery while the sharp drop in the current economic cycle has not been recovered.

clip_image016

Chart IA1-7, US, Percentage Share of Private Fixed Investment in Gross Domestic Product, Annual, 1929-2012

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IA1-8 provides percentage shares in GDP of nonresidential investment from 1929 to 2012. There is again recovery from sharp contraction in the 1980s but inadequate recovery in the current economic cycle.

clip_image017

Chart IA1-8, US, Percentage Share of Nonresidential Investment in Gross Domestic Product, Annual, 1929-2012

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IA1-9 provides percentage shares of business equipment and software in GDP with annual data from 1929 to 2012. There is again inadequate recovery in the current economic cycle.

clip_image018

Chart IA1-9, US, Percentage Share of Business Equipment and Software in Gross Domestic Product, Annual, 1929-2012

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IA1-10 provides percentage shares of residential investment in GDP with annual data from 1929 to 2012. The salient characteristic of Chart IA1-10 is the vertical increase of the share of residential investment in GDP up to 2006 and subsequent collapse.

clip_image019

Chart IA1-10, US, Percentage Share of Residential Investment in Gross Domestic Product, Annual, 1929-2012

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Finer detail is provided by the quarterly share of residential investment in GDP from 1979 to 2013 in Chart IA1-11. There was protracted growth of that share, accelerating sharply into 2006 followed with nearly vertical drop. The explanation of the sharp contraction of United States housing can probably be found in the origins of the financial crisis and global recession. Let V(T) represent the value of the firm’s equity at time T and B stand for the promised debt of the firm to bondholders and assume that corporate management, elected by equity owners, is acting on the interests of equity owners. Robert C. Merton (1974, 453) states:

“On the maturity date T, the firm must either pay the promised payment of B to the debtholders or else the current equity will be valueless. Clearly, if at time T, V(T) > B, the firm should pay the bondholders because the value of equity will be V(T) – B > 0 whereas if they do not, the value of equity would be zero. If V(T) ≤ B, then the firm will not make the payment and default the firm to the bondholders because otherwise the equity holders would have to pay in additional money and the (formal) value of equity prior to such payments would be (V(T)- B) < 0.”

Pelaez and Pelaez (The Global Recession Risk (2007), 208-9) apply this analysis to the US housing market in 2005-2006 concluding:

“The house market [in 2006] is probably operating with low historical levels of individual equity. There is an application of structural models [Duffie and Singleton 2003] to the individual decisions on whether or not to continue paying a mortgage. The costs of sale would include realtor and legal fees. There could be a point where the expected net sale value of the real estate may be just lower than the value of the mortgage. At that point, there would be an incentive to default. The default vulnerability of securitization is unknown.”

There are multiple important determinants of the interest rate: “aggregate wealth, the distribution of wealth among investors, expected rate of return on physical investment, taxes, government policy and inflation” (Ingersoll 1987, 405). Aggregate wealth is a major driver of interest rates (Ingersoll 1987, 406). Unconventional monetary policy, with zero fed funds rates and flattening of long-term yields by quantitative easing, causes uncontrollable effects on risk taking that can have profound undesirable effects on financial stability. Excessively aggressive and exotic monetary policy is the main culprit and not the inadequacy of financial management and risk controls.

The net worth of the economy depends on interest rates. In theory, “income is generally defined as the amount a consumer unit could consume (or believe that it could) while maintaining its wealth intact” (Friedman 1957, 10). Income, Y, is a flow that is obtained by applying a rate of return, r, to a stock of wealth, W, or Y = rW (Ibid). According to a subsequent restatement: “The basic idea is simply that individuals live for many years and that therefore the appropriate constraint for consumption decisions is the long-run expected yield from wealth r*W. This yield was named permanent income: Y* = r*W” (Darby 1974, 229), where * denotes permanent. The simplified relation of income and wealth can be restated as:

W = Y/r (1)

Equation (1) shows that as r goes to zero, r →0, W grows without bound, W→∞.

Lowering the interest rate near the zero bound in 2003-2004 caused the illusion of permanent increases in wealth or net worth in the balance sheets of borrowers and also of lending institutions, securitized banking and every financial institution and investor in the world. The discipline of calculating risks and returns was seriously impaired. The objective of monetary policy was to encourage borrowing, consumption and investment but the exaggerated stimulus resulted in a financial crisis of major proportions as the securitization that had worked for a long period was shocked with policy-induced excessive risk, imprudent credit, high leverage and low liquidity by the incentive to finance everything overnight at close to zero interest rates, from adjustable rate mortgages (ARMS) to asset-backed commercial paper of structured investment vehicles (SIV).

The consequences of inflating liquidity and net worth of borrowers were a global hunt for yields to protect own investments and money under management from the zero interest rates and unattractive long-term yields of Treasuries and other securities. Monetary policy distorted the calculations of risks and returns by households, business and government by providing central bank cheap money. Short-term zero interest rates encourage financing of everything with short-dated funds, explaining the SIVs created off-balance sheet to issue short-term commercial paper to purchase default-prone mortgages that were financed in overnight or short-dated sale and repurchase agreements (Pelaez and Pelaez, Financial Regulation after the Global Recession, 50-1, Regulation of Banks and Finance, 59-60, Globalization and the State Vol. I, 89-92, Globalization and the State Vol. II, 198-9, Government Intervention in Globalization, 62-3, International Financial Architecture, 144-9). ARMS were created to lower monthly mortgage payments by benefitting from lower short-dated reference rates. Financial institutions economized in liquidity that was penalized with near zero interest rates. There was no perception of risk because the monetary authority guaranteed a minimum or floor price of all assets by maintaining low interest rates forever or equivalent to writing an illusory put option on wealth. Subprime mortgages were part of the put on wealth by an illusory put on house prices. The housing subsidy of $221 billion per year created the impression of ever increasing house prices. The suspension of auctions of 30-year Treasuries was designed to increase demand for mortgage-backed securities, lowering their yield, which was equivalent to lowering the costs of housing finance and refinancing. Fannie and Freddie purchased or guaranteed $1.6 trillion of nonprime mortgages and worked with leverage of 75:1 under Congress-provided charters and lax oversight. The combination of these policies resulted in high risks because of the put option on wealth by near zero interest rates, excessive leverage because of cheap rates, low liquidity because of the penalty in the form of low interest rates and unsound credit decisions because the put option on wealth by monetary policy created the illusion that nothing could ever go wrong, causing the credit/dollar crisis and global recession (Pelaez and Pelaez, Financial Regulation after the Global Recession, 157-66, Regulation of Banks, and Finance, 217-27, International Financial Architecture, 15-18, The Global Recession Risk, 221-5, Globalization and the State Vol. II, 197-213, Government Intervention in Globalization, 182-4).

clip_image020

Chart IA1-11, US, Percentage Share of Residential Investment in Gross Domestic Product, Quarterly, 1979-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IA1-12 provides the share of intellectual property products investment in GDP with annual data from 1929 to 2012. This is an important addition in the revision and enhancement of GDP provided by the Bureau of Economic Analysis. The share rose sharply over time but in the past decade and stabilized at a lower level.

clip_image021

Chart IA1-12, US, Percentage Share of Intellectual Property Products Investment in Gross Domestic Product, Annual, 1929-2012

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IA1-13 provides the percentage share of intellectual property investment in GDP on a quarterly basis from 1979 to 2013. The share stabilized in the 2000s.

clip_image022

Chart IA1-13, US, Percentage Share of Intellectual Property Investment in Gross Domestic Product, Quarterly, 1979-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

ESIV Swelling Undistributed Corporate Profits. Table IA1-5 provides value added of corporate business, dividends and corporate profits in billions of current dollars at seasonally adjusted annual rates (SAAR) in IVQ2007 and IIIQ2013 together with percentage changes. The last three rows of Table IA1-5 provide gross value added of nonfinancial corporate business, consumption of fixed capital and net value added in billions of chained 2009 dollars at SAARs. Deductions from gross value added of corporate profits down the rows of Table IA1-5 end with undistributed corporate profits. Profits after taxes with inventory valuation adjustment (IVA) and capital consumption adjustment (CCA) increased by 104.1 percent in nominal terms from IVQ2007 to IIIQ2013 while net dividends increased 10.3 percent and undistributed corporate profits swelled 394.4 percent from $107.7 billion in IQ2007 to $532.5 billion in IIQ2013 and changed signs from minus $55.9 billion in current dollars in IVQ2007. The investment decision of United States corporations has been fractured in the current economic cycle in preference of cash. Gross value added of nonfinancial corporate business adjusted for inflation increased 5.3 percent from IVQ2007 to IIQ2013, which is much lower than nominal increase of 16.5 percent in the same period for gross value added of total corporate business.

Table IA1-5, US, Value Added of Corporate Business, Corporate Profits and Dividends, IVQ2007-IQ2013

 

IVQ2007

IIIQ2013

∆%

Current Billions of Dollars Seasonally Adjusted Annual Rates (SAAR)

     

Gross Value Added of Corporate Business

8,165.9

9,513.8

16.5

Consumption of Fixed Capital

1,216.5

1,428.7

17.4

Net Value Added

6,949.4

8,085.1

16.3

Compensation of Employees

4,945.8

5,414.0

9.5

Taxes on Production and Imports Less Subsidies

688.5

754.9

9.6

Net Operating Surplus

1,315.1

1,916.2

45.7

Net Interest and Misc

204.2

117.1

-42.7

Business Current Transfer Payment Net

68.9

93.2

35.3

Corporate Profits with IVA and CCA Adjustments

1,042.0

1,705.9

63.7

Taxes on Corporate Income

408.8

413.4

1.1

Profits after Tax with IVA and CCA Adjustment

633.2

1,292.4

104.1

Net Dividends

689.1

760.0

10.3

Undistributed Profits with IVA and CCA Adjustment

-55.9

532.5

NA

Billions of Chained USD 2009 SAAR

     

Gross Value Added of Nonfinancial Corporate Business

7,519.3

7,919.9

5.3

Consumption of Fixed Capital

1,066.0

1,172.8

10.0

Net Value Added

6,453.4

6,747.1

4.6

IVA: Inventory Valuation Adjustment; CCA: Capital Consumption Adjustment

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Table IA1-6 provides comparable United States value added of corporate business, corporate profits and dividends from IQ1980 to IVQ1986. There is significant difference both in nominal and inflation-adjusted data. Between IQ1980 and IVQ1986, profits after tax with IVA and CCA increased 66.6 percent with dividends growing 118.6 percent and undistributed profits increasing 15.5 percent. There was much higher inflation in the 1980s than in the current cycle. For example, the consumer price index for all items not seasonally adjusted increased 37.9 percent between Mar 1980 and Dec 1986 but only 11.5 percent between Dec 2007 and Sep 2013 (http://www.bls.gov/cpi/data.htm). The comparison is still valid in terms of inflation-adjusted data: gross value added of nonfinancial corporate business adjusted for inflation increased 25.5 percent between IQ1980 and IVQ1986 but only 5.3 percent between IVQ2007 and IIIQ2013 while net value added adjusted for inflation increased 24.3 percent between IQ1980 and IVQ1986 but only 4.6 percent between IVQ2007 and IIIQ2013.

Table IA1-6, US, Value Added of Corporate Business, Corporate Profits and Dividends, IQ1980-IVQ1985

 

IQ1980

IVQ1986

∆%

Current Billions of Dollars Seasonally Adjusted Annual Rates (SAAR)

     

Gross Value Added of Corporate Business

1,654.1

2,756.0

66.6

Consumption of Fixed Capital

200.5

357.7

78.4

Net Value Added

1,453.6

2,398.4

65.0

Compensation of Employees

1,072.9

1,765.1

64.5

Taxes on Production and Imports Less Subsidies

121.5

224.5

84.8

Net Operating Surplus

259.2

408.7

57.7

Net Interest and Misc.

50.4

106.0

110.3

Business Current Transfer Payment Net

11.5

26.3

128.7

Corporate Profits with IVA and CCA Adjustments

197.2

276.4

40.2

Taxes on Corporate Income

97.0

118.5

22.2

Profits after Tax with IVA and CCA Adjustment

100.2

158.0

57.7

Net Dividends

40.9

89.4

118.6

Undistributed Profits with IVA and CCA Adjustment

59.3

68.5

15.5

Billions of Chained USD 2009 SAAR

     

Gross Value Added of Nonfinancial Corporate Business

2,952.3

3,704.6

25.5

Consumption of Fixed Capital

315.6

428.0

35.6

Net Value Added

2,636.7

3,276.6

24.3

IVA: Inventory Valuation Adjustment; CCA: Capital Consumption Adjustment

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Chart IA1-12 of the US Bureau of Economic Analysis provides quarterly corporate profits after tax and undistributed profits with IVA and CCA from 1979 to 2013. There is tightness between the series of quarterly corporate profits and undistributed profits in the 1980s with significant gap developing from 1988 and to the present with the closest approximation peaking in IVQ2005 and surrounding quarters. These gaps widened during all recessions including in 1991 and 2001 and recovered in expansions with exceptionally weak performance in the current expansion.

clip_image023

Chart IA1-14, US, Corporate Profits after Tax and Undistributed Profits with Inventory Valuation Adjustment and Capital Consumption Adjustment, Quarterly, 1979-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Table IA1-7 provides price, costs and profit per unit of gross value added of nonfinancial domestic corporate income for IVQ2007 and IIIQ2013 in the upper block and for IQ1980 and IVQ1986 in the lower block. Compensation of employees or labor costs per unit of gross value added of nonfinancial domestic corporate income hardly changed from 0.577 in IVQ2007 to 0.600 in IIIQ2013 in a fractured labor market but increased from 0.340 in IQ1980 to 0.436 in IVQ1986 in a more vibrant labor market. Unit nonlabor costs increased mildly from 0.270 per unit of gross value added in IVQ2007 to 0.294 in IIIQ2013 but increased from 0.124 in IQ1980 to 0.181 in IVQ1986 in an economy closer to full employment of resources. Profits after tax with IVA and CCA per unit of gross value added of nonfinancial domestic corporate income increased from 0.076 in IVQ2007 to 0.123 in IIIQ2013 and from 0.029 in IQ1980 to 0.037 in IVQ1986.

Table IA1-7, US, Price, Costs and Profit per Unit of Gross Value Added of Nonfinancial Domestic Corporate Income

 

IVQ2007

IIIQ2013

Price per Unit of Real Gross Value Added of Nonfinancial Corporate Business

0.961

1.052

Compensation of Employees (Unit Labor Cost)

0.577

0.600

Unit Nonlabor Cost

0.270

0.294

Consumption of Fixed Capital

0.140

0.157

Taxes on Production and Imports less Subsidies plus Business Current Transfer Payments (net)

0.093

0.098

Net Interest and Misc. Payments

0.037

0.039

Corporate Profits with IVA and CCA Adjustment (Unit Profits from Current Production)

0.114

0.157

Taxes on Corporate Income

0.038

0.033

Profits after Tax with IVA and CCA Adjustment

0.076

0.123

 

IQ1980

IVQ1986

Price per Unit of Real Gross Value Added of Nonfinancial Corporate Business

0.518

0.678

Compensation of Employees (Unit Labor Cost)

0.340

0.436

Unit Nonlabor Cost

0.124

0.181

Consumption of Fixed Capital

0.064

0.087

Taxes on Production and Imports less Subsidies plus Business Current Transfer Payments (net)

0.042

0.064

Net Interest and Misc. Payments

0.018

0.030

Corporate Profits with IVA and CCA Adjustment (Unit Profits from Current Production)

0.055

0.060

Taxes on Corporate Income

0.026

0.023

Profits after Tax with IVA and CCA Adjustment

0.029

0.037

IVA: Inventory Valuation Adjustment; CCA: Capital Consumption Adjustment

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Chart IA1-13 provides quarterly profits after tax with IVA and CCA per unit of gross value added of nonfinancial domestic corporate income from 1980 to 2013. In an environment of idle labor and other productive resources nonfinancial corporate income increased after tax profits with IVA and CCA per unit of gross value added at a faster pace in the weak economy from IVQ2007 to IIIQ2013 than in the vibrant expansion of the cyclical contractions of the 1980s. Part of the profits was distributed as dividends and significant part was retained as undistributed profits in the current economic cycle with frustrated investment decision.

clip_image024

Chart IA1-15, US, Profits after Tax with Inventory Valuation Adjustment and Capital Consumption Adjustment per Unit of Gross Value Added of Nonfinancial Domestic Corporate Income, 1980-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Table IA1-8 provides seasonally adjusted annual rates of change of corporate profits from IVQ2012 to IIIQ2013. US corporate profits with inventory valuation adjustment (IVA) and capital consumption adjustment (CCA) fell 1.3 percent in IQ2013 and 0.1 percent after taxes. Corporate profits with IVA and CCA rebounded at 3.3 percent in IIQ2013 and at 3.5 percent after taxes. Corporate profits with IVA and CCA increased at 1.8 percent in IIIQ2013 and 2.6 percent after taxes. Net dividends jumped 16.2 percent in IVQ2012 in generalized anticipation of income because of fear of the so-called “fiscal cliff,” or increases in taxes in 2013, and fell 12.0 percent in IQ2013 in adjustment to normal levels. Net dividends jumped at 35.8 percent in IIQ2013 and fell at 17.3 percent in IIIQ2013. Undistributed profits fell 9.7 percent in IVQ2012 in anticipation of tax increases and adjusted by increasing 13.7 percent in IQ2013. Undistributed profits fell at 25.5 percent in IIQ2013 and increased at 35.2 percent in IIIQ2013.

Table IA1-8, Quarterly Seasonally Adjusted Annual Equivalent Percentage Rates of Change of Corporate Profits, ∆%

 

IVQ2012

IQ2013

IIQ2013

IIIQ2013

Corporate Profits with IVA and CCA

1.7

-1.3

3.3

1.8

Corporate Income Taxes

-1.3

-5.8

2.4

-1.1

After Tax Profits with IVA and CCA

2.6

-0.1

3.5

2.6

Net Dividends

16.2

-12.0

35.8

-17.3

Und Profits with IVA and CCA

-9.7

13.7

-25.5

35.2

Source: Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Table IA1-9 provides change from prior quarter of the level of seasonally adjusted annual rates of US corporate profits. Corporate profits with IVA and CCA fell $26.6 billion in IQ2013 after increasing $34.9 billion in IVQ2012 and $13.9 billion in IIIQ2012. Corporate profits with IVA and CCA rebounded with $66.8 billion in IIQ2013 and $38.3 billion in IIIQ2013. Profits after tax with IVA and CCA fell $1.7 billion in IQ2013 after increasing $40.8 billion in IVQ2012 and $4.5 billion in IIIQ2012. In IIQ2013, profits after tax with IVA and CCA increased $56.9 billion and $43.0 billion in IIIQ2013. Anticipation of higher taxes in the “fiscal cliff” episode caused increase of $120.9 billion in net dividends in IVQ2012 followed with adjustment in the form of decrease of net dividends by $103.8 billion in IQ2013, rebounding with $273.5 billion in IIQ2013. Net dividends fell at $179.7 billion in IIIQ2013. There is similar decrease of $80.1 billion in undistributed profits with IVA and CCA in IVQ2012 followed by increase of $102.1 billion in IQ2013 and decline of $216.6 billion in IIQ2013. Undistributed profits with IVA and CCA rose at $222.8 billion in IIIQ2013. Undistributed profits of US corporations swelled 394.4 percent from $107.7 billion IQ2007 to $532.5 billion in IIIQ2013 and changed signs from minus $55.9 billion in billion in IVQ2007 (Section IA2). In IQ2013, corporate profits with inventory valuation and capital consumption adjustment fell $26.6 billion relative to IVQ2012, from $2047.2 billion to $2020.6 billion at the quarterly rate of minus 1.3 percent. In IIQ2013, corporate profits with IVA and CCA increased $66.8 billion from $2020.6 billion in IQ2013 to $2087.4 billion at the quarterly rate of 3.3 percent. Corporate profits with IVA and CCA increased $38.3 billion from $2087.4 billion in IIQ2013 to $2125.7 billion in IIIQ2013 at the annual rate of 1.8 percent. (http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp3q13_2nd.pdf). Uncertainty originating in fiscal, regulatory and monetary policy causes wide swings in expectations and decisions by the private sector with adverse effects on investment, real economic activity and employment.

Table IA1-9, Change from Prior Quarter of Level of Seasonally Adjusted Annual Equivalent Rates of Corporate Profits, Billions of Dollars

 

IVQ2012

IQ2013

IIQ2013

IIIQ2013

Corporate Profits with IVA and CCA

34.9

-26.6

66.8

38.3

Corporate Income Taxes

-5.9

-25.0

10.0

-4.8

After Tax Profits with IVA and CCA

40.8

-1.7

56.9

43.0

Net Dividends

120.9

-103.8

273.5

-179.7

Und Profits with IVA and CCA

-80.1

102.1

-216.6

222.8

Source: Bureau of Economic Analysis

http://bea.gov/iTable/index_nipa.cfm

ESV Stagnating Real Disposable Per Capita Income. The Bureau of Economic Analysis (BEA) provides a wealth of revisions and enhancements of US personal income and outlays since 1929 (http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0613.pdf http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0713.pdf http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0813.pdf http://www.bea.gov/iTable/index_nipa.cfm http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0913.pdf http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi1013.pdf). Table IB-4 provides growth rates of real disposable income and real disposable income per capita in the long-term and selected periods. Real disposable income consists of after-tax income adjusted for inflation. Real disposable income per capita is income per person after taxes and inflation. There is remarkable long-term trend of real disposable income of 3.2 percent per year on average from 1929 to 2012 and 2.0 percent in real disposable income per capita. Real disposable income increased at the average yearly rate of 3.7 percent from 1947 to 1999 and real disposable income per capita at 2.3 percent. These rates of increase broadly accompany rates of growth of GDP. Institutional arrangements in the United States provided the environment for growth of output and income after taxes, inflation and population growth. There is significant break of growth by much lower 2.4 percent for real disposable income on average from 1999 to 2012 and 1.5 percent in real disposable per capita income. Real disposable income grew at 3.5 percent from 1980 to 1989 and real disposable per capita income at 2.6 percent. In contrast, real disposable income grew at only 1.4 percent on average from 2006 to 2012 and real disposable income at 0.6 percent. The United States has interrupted its long-term and cyclical dynamism of output, income and employment growth. Recovery of this dynamism could prove to be a major challenge.

Table IB-4, Average Annual Growth Rates of Real Disposable Income (RDPI) and Real Disposable Income per Capita (RDPIPC), Percent per Year 

RDPI Average ∆%

 

     1929-2012

3.2

     1947-1999

3.7

     1999-2012

2.4

     1999-2006

3.2

     1980-1989

3.5

     2006-2012

1.4

RDPIPC Average ∆%

 

     1929-2012

2.0

     1947-1999

2.3

     1999-2012

1.5

     1999-2006

2.2

     1980-1989

2.6

     2006-2012

0.6

Source: Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Chart IB-3 provides personal income in the US between 1980 and 1989. These data are not adjusted for inflation that was still high in the 1980s in the exit from the Great Inflation of the 1960s and 1970s. Personal income grew steadily during the 1980s after recovery from two recessions from Jan IQ1980 to Jul IIIQ1980 and from Jul IIIQ1981 to Nov IVQ1982.

clip_image025

Chart IB-3, US, Personal Income, Billion Dollars, Quarterly Seasonally Adjusted at Annual Rates, 1980-1989

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

A different evolution of personal income is shown in Chart IB-4. Personal income also fell during the recession from Dec IVQ2007 to Jun IIQ2009 (http://www.nber.org/cycles.html). Growth of personal income during the expansion has been tepid even with the new revisions. In IVQ2012, nominal disposable personal income grew at the SAAR of 11.3 percent and real disposable personal income at 9.0 percent (http://www.bea.gov/iTable/index_nipa.cfm http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0713.pdf http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0813.pdf http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0613.pdf http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0913.pdf http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi1013.pdf Table 6), which the BEA explains as: “Personal income in November and December was boosted by accelerated and special dividend payments to persons and by accelerated bonus payments and other irregular pay in private wages and salaries in anticipation of changes in individual income tax rates. Personal income in December was also boosted by lump-sum social security benefit payments” (page 2 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi1212.pdf pages 1-2 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0113.pdf). The Bureau of Economic Analysis explains as (http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0213.pdf 2-3): “The January estimate of employee contributions for government social insurance reflected the expiration of the “payroll tax holiday,” that increased the social security contribution rate for employees and self-employed workers by 2.0 percentage points, or $114.1 billion at an annual rate. For additional information, see FAQ on “How did the expiration of the payroll tax holiday affect personal income for January 2013?” at www.bea.gov. The January estimate of employee contributions for government social insurance also reflected an increase in the monthly premiums paid by participants in the supplementary medical insurance program, in the hospital insurance provisions of the Patient Protection and Affordable Care Act, and in the social security taxable wage base.”

The increase was provided in the “fiscal cliff” law H.R. 8 American Taxpayer Relief Act of 2012 (http://www.gpo.gov/fdsys/pkg/BILLS-112hr8eas/pdf/BILLS-112hr8eas.pdf).

In IQ2013, personal income fell at the SAAR of minus 4.1 percent; real personal income excluding current transfer receipts at minus 7.2 percent; and real disposable personal income at minus 7.9 percent (Table 6 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0913.pdf). The BEA explains as follows (page 3 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0313.pdf):

“The February and January changes in disposable personal income (DPI) mainly reflected the effect of special factors in January, such as the expiration of the “payroll tax holiday” and the acceleration of bonuses and personal dividends to November and to December in anticipation of changes in individual tax rates.”

In IIQ2013, personal income grew at 4.7 percent, real personal income excluding current transfer receipts at 5.6 percent and real disposable income at 4.1 percent (http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi1013.pdf). In IIIQ2013, personal income grew at 4.2 percent, real personal income excluding current transfers at 1.9 percent and real disposable income at 2.9 percent (Table 6 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi1013.pdf).

clip_image026

Chart IB-4, US, Personal Income, Current Billions of Dollars, Quarterly Seasonally Adjusted at Annual Rates, 2007-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Real or inflation-adjusted disposable personal income is provided in Chart IB-5 from 1980 to 1989. Real disposable income after allowing for taxes and inflation grew steadily at high rates during the entire decade.

clip_image027

Chart IB-5, US, Real Disposable Income, Billions of Chained 2009 Dollars, Quarterly Seasonally Adjusted at Annual Rates 1980-1989

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

In IQ2013, personal income fell at the SAAR of minus 4.1 percent; real personal income excluding current transfer receipts at minus 7.2 percent; and real disposable personal income at minus 7.9 percent (Table 6 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi1013.pdf). The BEA explains as follows (page 3 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0313.pdf):

“The February and January changes in disposable personal income (DPI) mainly reflected the effect of special factors in January, such as the expiration of the “payroll tax holiday” and the acceleration of bonuses and personal dividends to November and to December in anticipation of changes in individual tax rates.”

This is the explanation for the decline in IQ2013 in Chart IB-6. In IIQ2013, personal income increased at 4.7 percent, real disposable income excluding current transfer receipts at 5.6 percent and real disposable income at 4.1 percent. In IIIQ2013, personal income increased at 4.2 percent, real personal income excluding current transfer receipts at 1.9 percent and real disposable income at 2.9 percent (http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi1013.pdf).

clip_image028

Chart IB-6, US, Real Disposable Income, Billions of Chained 2009 Dollars, Quarterly Seasonally Adjusted at Annual Rates, 2007-2013

http://www.bea.gov/iTable/index_nipa.cfm

Chart IB-7 provides percentage quarterly changes in real disposable income from the preceding period at seasonally adjusted annual rates from 1980 to 1989. Rates of changes were high during the decade with few negative changes.

clip_image029

Chart IB-7, US, Real Disposable Income Percentage Change from Preceding Period at Quarterly Seasonally-Adjusted Annual Rates, 1980-1989

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IB-8 provides percentage quarterly changes in real disposable income from the preceding period at seasonally adjusted annual rates from 2007 to 2013. There has been a period of positive rates followed by decline of rates and then negative and low rates in 2011. Recovery in 2012 has not reproduced the dynamism of the brief early phase of expansion. In IVQ2012, nominal disposable personal income grew at the SAAR of 11.3 percent and real disposable personal income at 9.0 percent (http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi1013.pdf), which the BEA explains as: “Personal income in November and December was boosted by accelerated and special dividend payments to persons and by accelerated bonus payments and other irregular pay in private wages and salaries in anticipation of changes in individual income tax rates. Personal income in December was also boosted by lump-sum social security benefit payments” (page 2 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi1212.pdf). In IQ2013, personal income fell at the SAAR of minus 4.1 percent; real personal income excluding current transfer receipts at minus 7.2 percent; and real disposable personal income at minus 7.9 percent (Table 6 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi1013.pdf). The BEA explains as follows (page 3 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0313.pdf):

“The February and January changes in disposable personal income (DPI) mainly reflected the effect of special factors in January, such as the expiration of the “payroll tax holiday” and the acceleration of bonuses and personal dividends to November and to December in anticipation of changes in individual tax rates.”

In IIQ2013, personal income grew at 4.7 percent, real personal income excluding current transfer receipts at 5.6 percent and real disposable personal income at 4.1 percent. In IIIQ2013, personal income grew at 4.2 percent, real personal income excluding current transfers at 1.9 percent and real disposable personal income at 2.9 percent (http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi1013.pdf).

clip_image030

Chart, IB-8, US, Real Disposable Income, Percentage Change from Preceding Period at Seasonally-Adjusted Annual Rates, 2007-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

In the latest available report, the Bureau of Economic Analysis (BEA) estimates US personal income in Oct 2013 at the seasonally adjusted annual rate of $14,290.1 billion, as shown in Table IB-3 above (see Table 1 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi1013.pdf). The major portion of personal income is compensation of employees of $8,935.0 billion, or 62.5 percent of the total. Wages and salaries are $7,203.2 billion, of which $6,005.9 billion by private industries and supplements to wages and salaries of $1,731.7 billion (employer contributions to pension and insurance funds are $1,197.2 billion and contributions to social insurance are $534.6 billion). In Oct 1985, US personal income was $3,575.1 billion at SAAR (http://www.bea.gov/iTable/index_nipa.cfm). Compensation of employees was $2,439.8billion, or 68.2 percent of the total. Wages and salaries were $2,022.9 billion of which $1642.6 billion by private industries. Supplements to wages and salaries were $416.9 billion with employer contributions to pension and insurance funds of $266.6 billion and $150.3 billion to government social insurance. Chart IB-9 provides US wages and salaries by private industries in the 1980s. Growth was robust after the interruption of the recessions.

clip_image031

Chart IB-9, US, Wages and Salaries, Private Industries, Quarterly, Seasonally Adjusted at Annual Rates Billions of Dollars, 1980-1989

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart II-10 shows US wages and salaries of private industries from 2007 to 2012. There is a drop during the contraction followed by initial recovery in 2010 and then the current much weaker relative performance in 2011, 2012 and 2013.

clip_image032

Chart IB-10, US, Wage and Salary Disbursement, Private Industries, Quarterly, Seasonally Adjusted at Annual Rates, Billions of Dollars 2007-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IB-11 provides finer detail with monthly wages and salaries of private industries from 2007 to 2013. Total wages and salaries changed 0.0 percent from Dec 2012 to Oct 2013, as shown in Table IB-3.

clip_image033

Chart IB-11, US, Wages and Salaries, Private Industries, Monthly, Seasonally Adjusted at Annual Rates, Billions of Dollars 2007-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IB-12 provides monthly real disposable personal income per capita from 1980 to 1989. This is the ultimate measure of wellbeing in receiving income by obtaining the value per inhabitant. The measure cannot adjust for the distribution of income. Real disposable personal income per capita grew rapidly during the expansion after 1983 and continued growing during the rest of the decade.

clip_image034

Chart IB-12, US, Real Disposable Per Capita Income, Monthly, Seasonally Adjusted at Annual Rates, Chained 2009 Dollars 1980-1989

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IB-13 provides monthly real disposable personal per capita from 2007 to 2013. There was initial recovery from the drop during the global recession followed by stagnation. Real per capita disposable income increased 1.2 percent from $36,580 in chained dollars of 2009 in Oct 2012 to $37,030 in Nov 2012 and 3.1 percent to $38,170 in Dec 2012 for cumulative increase of 4.3 percent from Oct 2012 to Dec 2012. Real per capita disposable income fell 5.2 percent from $38,170 in Dec 2012 to $36,190 in Jan 2013, increasing marginally 0.8 percent to $36,497 in Feb 2013 for cumulative change of minus 0.2 percent from Oct 2012 (data at http://www.bea.gov/iTable/index_nipa.cfm). This increase is shown in a jump in the final segment in Chart II-13 with Nov-Dec 2012, decline in Jan 2013 and recovery in Feb 2013. Real per capita disposable income increased 0.4 percent from $36,497 in Feb 2013 in chained dollars of 2009 to $36,626 in Mar 2013 for cumulative increase of 0.1 percent relative to Oct 2012. Real per capita disposable income increased to $36,786 in May 2013 for gain of 0.2 percent relative to $36,708 in Apr 2013 and 0.6 percent from Oct 2012. Real disposable per capita income eased to $36,736 in Jun 2013 for decrease of 0.1 percent relative to May 2013 and increase of 0.4 percent relative to Oct 2012. Real disposable income per capita increased 0.2 percent from $36,736 in Jun 2013 to $36,796 in Jul 2013 and 0.6 percent relative to $36,580 in Oct 2013. Real per capita disposable income increased to $36,952 in Aug 2013 or 0.4 percent higher than in Jul 2013 and 1.0 percent above Oct 2012. Real per capita disposable income increased 0.3 percent from $36,952 in Aug 2013 to $37,068 in Sep 2013 and increased 1.3 percent relative to $36,580 in Oct 2012. Real per capita disposable income decreased 0.2 percent from $37,068 in Sep 2013 to $36,985 in Oct 2013 and increased 1.1 percent relative to $36,580 in Oct 2012. BEA explains as: “Personal income in November and December was boosted by accelerated and special dividend payments to persons and by accelerated bonus payments and other irregular pay in private wages and salaries in anticipation of changes in individual income tax rates. Personal income in December was also boosted by lump-sum social security benefit payments” (page 2 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi1212.pdf pages 1-2 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0113.pdf). The Bureau of Economic Analysis explains as (http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0213.pdf 2-3): “The January estimate of employee contributions for government social insurance reflected the expiration of the “payroll tax holiday,” that increased the social security contribution rate for employees and self-employed workers by 2.0 percentage points, or $114.1 billion at an annual rate. For additional information, see FAQ on “How did the expiration of the payroll tax holiday affect personal income for January 2013?” at www.bea.gov. The January estimate of employee contributions for government social insurance also reflected an increase in the monthly premiums paid by participants in the supplementary medical insurance program, in the hospital insurance provisions of the Patient Protection and Affordable Care Act, and in the social security taxable wage base.”

The increase was provided in the “fiscal cliff” law H.R. 8 American Taxpayer Relief Act of 2012 (http://www.gpo.gov/fdsys/pkg/BILLS-112hr8eas/pdf/BILLS-112hr8eas.pdf).

The BEA explains as follows (page 3 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0313.pdf):

“The February and January changes in disposable personal income (DPI) mainly reflected the effect of special factors in January, such as the expiration of the “payroll tax holiday” and the acceleration of bonuses and personal dividends to November and to December in anticipation of changes in individual tax rates.”

clip_image035

Chart IB-13, US, Real Disposable Per Capita Income, Monthly, Seasonally Adjusted at Annual Rates, Chained 2009 Dollars 2007-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

ESVI Twenty Eight Million Unemployed or Underemployed. Table I-4 consists of data and additional calculations using the BLS household survey, illustrating the possibility that the actual rate of unemployment could be 11.3 percent and the number of people in job stress could be around 28.1 million, which is 17.2 percent of the effective labor force. The first column provides for 2006 the yearly average population (POP), labor force (LF), participation rate or labor force as percent of population (PART %), employment (EMP), employment population ratio (EMP/POP %), unemployment (UEM), the unemployment rate as percent of labor force (UEM/LF Rate %) and the number of people not in the labor force (NLF). All data are unadjusted or not-seasonally-adjusted (NSA). The numbers in column 2006 are averages in millions while the monthly numbers for Nov 2012, Oct 2013 and Nov 2013 are in thousands, not seasonally adjusted. The average yearly participation rate of the population in the labor force was in the range of 66.0 percent minimum to 67.1 percent maximum between 2000 and 2006 with the average of 66.4 percent (ftp://ftp.bls.gov/pub/special.requests/lf/aa2006/pdf/cpsaat1.pdf). Table I-4b provides the yearly labor force participation rate from 1979 to 2013. The objective of Table I-4 is to assess how many people could have left the labor force because they do not think they can find another job. Row “LF PART 66.2 %” applies the participation rate of 2006, almost equal to the rates for 2000 to 2006, to the noninstitutional civilian population in Nov 2012, Oct 2013 and Nov 2013 to obtain what would be the labor force of the US if the participation rate had not changed. In fact, the participation rate fell to 63.5 percent by Nov 2012 and was 62.9 percent in Oct 2013 and 62.9 percent in Nov 2013, suggesting that many people simply gave up on finding another job. Row “∆ NLF UEM” calculates the number of people not counted in the labor force because they could have given up on finding another job by subtracting from the labor force with participation rate of 66.2 percent (row “LF PART 66.2%”) the labor force estimated in the household survey (row “LF”). Total unemployed (row “Total UEM”) is obtained by adding unemployed in row “∆NLF UEM” to the unemployed of the household survey in row “UEM.” The row “Total UEM%” is the effective total unemployed “Total UEM” as percent of the effective labor force in row “LF PART 66.2%.” The results are that:

  • there are an estimated 8.181 million unemployed in Nov 2013 who are not counted because they left the labor force on their belief they could not find another job (∆NLF UEM), that is, they dropped out of their job searches
  • the total number of unemployed is effectively 18.452 million (Total UEM) and not 10.271 million (UEM) of whom many have been unemployed long term
  • the rate of unemployment is 11.3 percent (Total UEM%) and not 6.6 percent, not seasonally adjusted, or 7.0 percent seasonally adjusted
  • the number of people in job stress is close to 28.1 million by adding the 8.181 million leaving the labor force because they believe they could not find another job.

The row “In Job Stress” in Table I-4 provides the number of people in job stress not seasonally adjusted at 28.111 million in Sep 2013, adding the total number of unemployed (“Total UEM”), plus those involuntarily in part-time jobs because they cannot find anything else (“Part Time Economic Reasons”) and the marginally attached to the labor force (“Marginally attached to LF”). The final row of Table I-4 shows that the number of people in job stress is equivalent to 17.2 percent of the labor force in Nov 2013. The employment population ratio “EMP/POP %” dropped from 62.9 percent on average in 2006 to 58.8 percent in Nov 2012, 58.5 percent in Oct 2013 and 58.7 percent in Nov 2013. The number employed in Nov 2013 was 144.775 million (NSA) or 2.540 million fewer people with jobs relative to the peak of 147.315 million in Jul 2007 while the civilian noninstitutional population increased from 231.958 million in Jul 2007 to 246.567 million in Nov 2013 or by 14.609 million. The number employed fell 1.7 percent from Jul 2007 to Nov 2013 while population increased 6.3 percent. There is actually not sufficient job creation in merely absorbing new entrants in the labor force because of those dropping from job searches, worsening the stock of unemployed or underemployed in involuntary part-time jobs.

What really matters for labor input in production and wellbeing is the number of people with jobs or the employment/population ratio, which has declined and does not show signs of increasing. There are several million fewer people working in 2013 than in 2006 and the number employed is not increasing while population increased 14.609 million. The argument that anemic population growth causes “secular stagnation” in the US (Hansen 1938, 1939, 1941) is as misplaced currently as in the late 1930s (for early dissent see Simons 1942). There is currently population growth in the ages of 16 to 24 years but not enough job creation and discouragement of job searches for all ages (http://cmpassocregulationblog.blogspot.com/2013/11/risks-of-zero-interest-rates-world.html). This is merely another case of theory without reality with dubious policy proposals. The number of hiring relative to the number unemployed measures the chances of becoming employed. The number of hiring in the US economy has declined by 17 million and does not show signs of increasing in an unusual recovery without hiring (http://cmpassocregulationblog.blogspot.com/2013/11/risks-of-zero-interest-rates-world.html).

Table I-4, US, Population, Labor Force and Unemployment, NSA

 

2006

Nov 2012

Oct 2013

Nov 2013

POP

229

244.174

246,381

246,567

LF

151

154,953

154,918

155,046

PART%

66.2

63.5

62.9

62.9

EMP

144

143,549

144,144

144,775

EMP/POP%

62.9

58.8

58.5

58.7

UEM

7

11,404

10,773

10,271

UEM/LF Rate%

4.6

7.4

7.0

6.6

NLF

77

89,221

91,463

91,521

LF PART 66.2%

 

161,643

163,104

163,227

NLF UEM

 

6,690

8,186

8,181

Total UEM

 

18,094

18,959

18,452

Total UEM%

 

11.2

11.6

11.3

Part Time Economic Reasons

 

7,994

7,700

7,563

Marginally Attached to LF

 

2,505

2,283

2,096

In Job Stress

 

28,593

28,942

28,111

People in Job Stress as % Labor Force

 

17.7

17.7

17.2

Pop: population; LF: labor force; PART: participation; EMP: employed; UEM: unemployed; NLF: not in labor force; NLF UEM: additional unemployed; Total UEM is UEM + NLF UEM; Total UEM% is Total UEM as percent of LF PART 66.2%; In Job Stress = Total UEM + Part Time Economic Reasons + Marginally Attached to LF

Note: the first column for 2006 is in average millions; the remaining columns are in thousands; NSA: not seasonally adjusted

The labor force participation rate of 66.2% in 2006 is applied to current population to obtain LF PART 66.2%; NLF UEM is obtained by subtracting the labor force with participation of 66.2 percent from the household survey labor force LF; Total UEM is household data unemployment plus NLF UEM; and total UEM% is total UEM divided by LF PART 66.2%

Source: US Bureau of Labor Statistics http://www.bls.gov/

In revealing research, Edward P. Lazear and James R. Spletzer (2012JHJul22) use the wealth of data in the valuable database and resources of the Bureau of Labor Statistics (http://www.bls.gov/data/) in providing clear thought on the nature of the current labor market of the United States. The critical issue of analysis and policy currently is whether unemployment is structural or cyclical. Structural unemployment could occur because of (1) industrial and demographic shifts and (2) mismatches of skills and job vacancies in industries and locations. Consider the aggregate unemployment rate, Y, expressed in terms of share si of a demographic group in an industry i and unemployment rate yi of that demographic group (Lazear and Spletzer 2012JHJul22, 5-6):

Y = ∑isiyi (1)

This equation can be decomposed for analysis as (Lazear and Spletzer 2012JHJul22, 6):

Y = ∑isiy*i + ∑iyis*i (2)

The first term in (2) captures changes in the demographic and industrial composition of the economy ∆si multiplied by the average rate of unemployment y*i , or structural factors. The second term in (2) captures changes in the unemployment rate specific to a group, or ∆yi, multiplied by the average share of the group s*i, or cyclical factors. There are also mismatches in skills and locations relative to available job vacancies. A simple observation by Lazear and Spletzer (2012JHJul22) casts intuitive doubt on structural factors: the rate of unemployment jumped from 4.4 percent in the spring of 2007 to 10 percent in October 2009. By nature, structural factors should be permanent or occur over relative long periods. The revealing result of the exhaustive research of Lazear and Spletzer (2012JHJul22) is:

“The analysis in this paper and in others that we review do not provide any compelling evidence that there have been changes in the structure of the labor market that are capable of explaining the pattern of persistently high unemployment rates. The evidence points to primarily cyclic factors.”

Table I-4b and Chart I-12-b provide the US labor force participation rate or percentage of the labor force in population. It is not likely that simple demographic trends caused the sharp decline during the global recession and failure to recover earlier levels. The civilian labor force participation rate dropped from the peak of 66.9 percent in Jul 2006 to 62.9 percent in Nov 2013. The civilian labor force participation rate was 63.7 percent on an annual basis in 1979 and 63.4 percent in Dec 1980 and Dec 1981, reaching even 62.9 percent in both Apr and May 1979. The civilian labor force participation rate jumped with the recovery to 64.8 percent on an annual basis in 1985 and 65.9 percent in Jul 1985. Structural factors cannot explain these sudden changes vividly shown visually in the final segment of Chart I-12b. Seniors would like to delay their retiring especially because of the adversities of financial repression on their savings. Labor force statistics are capturing the disillusion of potential workers with their chances in finding a job in what Lazear and Spletzer (2012JHJul22) characterize as accentuated cyclical factors. The argument that anemic population growth causes “secular stagnation” in the US (Hansen 1938, 1939, 1941) is as misplaced currently as in the late 1930s (for early dissent see Simons 1942). There is currently population growth in the ages of 16 to 24 years but not enough job creation and discouragement of job searches for all ages (http://cmpassocregulationblog.blogspot.com/2013/11/risks-of-zero-interest-rates-world.html). This is merely another case of theory without reality with dubious policy proposals.

Table I-4b, US, Labor Force Participation Rate, Percent of Labor Force in Population, NSA, 1979-2013

Year

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Annual

1979

62.9

62.9

64.5

64.9

64.5

63.8

64.0

63.8

63.8

63.7

1980

63.2

63.5

64.6

65.1

64.5

63.6

63.9

63.7

63.4

63.8

1981

63.6

63.9

64.6

65.0

64.6

63.5

64.0

63.8

63.4

63.9

1982

63.3

63.9

64.8

65.3

64.9

64.0

64.1

64.1

63.8

64.0

1983

63.2

63.4

65.1

65.4

65.1

64.3

64.1

64.1

63.8

64.0

1984

63.7

64.3

65.5

65.9

65.2

64.4

64.6

64.4

64.3

64.4

1985

64.3

64.6

65.5

65.9

65.4

64.9

65.1

64.9

64.6

64.8

1986

64.6

65.0

66.3

66.6

66.1

65.3

65.5

65.4

65.0

65.3

1987

64.9

65.6

66.3

66.8

66.5

65.5

65.9

65.7

65.5

65.6

1988

65.3

65.5

66.7

67.1

66.8

65.9

66.1

66.2

65.9

65.9

1989

65.9

66.2

67.4

67.7

67.2

66.3

66.6

66.7

66.3

66.5

1990

66.1

66.5

67.4

67.7

67.1

66.4

66.5

66.3

66.1

66.5

1991

66.0

66.0

67.2

67.3

66.6

66.1

66.1

66.0

65.8

66.2

1992

66.0

66.4

67.6

67.9

67.2

66.3

66.2

66.2

66.1

66.4

1993

65.6

66.3

67.3

67.5

67.0

66.1

66.4

66.3

66.2

66.3

1994

66.0

66.5

67.2

67.5

67.2

66.5

66.8

66.7

66.5

66.6

1995

66.4

66.4

67.2

67.7

67.1

66.5

66.7

66.5

66.2

66.6

1996

66.2

66.7

67.4

67.9

67.2

66.8

67.1

67.0

66.7

66.8

1997

66.7

67.0

67.8

68.1

67.6

67.0

67.1

67.1

67.0

67.1

1998

66.6

67.0

67.7

67.9

67.3

67.0

67.1

67.1

67.0

67.1

1999

66.7

67.0

67.7

67.9

67.3

66.8

67.0

67.0

67.0

67.1

2000

67.0

67.0

67.7

67.6

67.2

66.7

66.9

66.9

67.0

67.1

2001

66.7

66.6

67.2

67.4

66.8

66.6

66.7

66.6

66.6

66.8

2002

66.4

66.5

67.1

67.2

66.8

66.6

66.6

66.3

66.2

66.6

2003

66.2

66.2

67.0

66.8

66.3

65.9

66.1

66.1

65.8

66.2

2004

65.7

65.8

66.5

66.8

66.2

65.7

66.0

66.1

65.8

66.0

2005

65.8

66.0

66.5

66.8

66.5

66.1

66.2

66.1

65.9

66.0

2006

65.8

66.0

66.7

66.9

66.5

66.1

66.4

66.4

66.3

66.2

2007

65.7

65.8

66.6

66.8

66.1

66.0

66.0

66.1

65.9

66.0

2008

65.7

66.0

66.6

66.8

66.4

65.9

66.1

65.8

65.7

66.0

2009

65.4

65.5

66.2

66.2

65.6

65.0

64.9

64.9

64.4

65.4

2010

64.9

64.8

65.1

65.3

65.0

64.6

64.4

64.4

64.1

64.7

2011

63.9

64.1

64.5

64.6

64.3

64.2

64.1

63.9

63.8

64.1

2012

63.4

63.8

64.3

64.3

63.7

63.6

63.8

63.5

63.4

63.7

2013

63.1

63.5

64.0

64.0

63.4

63.2

62.9

62.9

   

Source: US Bureau of Labor Statistics http://www.bls.gov/

clip_image036

Chart I-12b, US, Labor Force Participation Rate, Percent of Labor Force in Population, NSA, 1979-2013

Source: Bureau of Labor Statistics

http://www.bls.gov/data/

Broader perspective is provided by Chart I-12c of the US Bureau of Labor Statistics. The United States civilian noninstitutional population has increased along a consistent trend since 1948 that continued through earlier recessions and the global recession from IVQ2007 to IIQ2009 and the cyclical expansion after IIIQ2009.

clip_image037

Chart I-12c, US, Civilian Noninstitutional Population, Thousands, NSA, 1948-2013

Sources: US Bureau of Labor Statistics

http://www.bls.gov/data/

The labor force of the United States in Chart I-12d has increased along a trend similar to that of the civilian noninstitutional population in Chart I-12c. There is an evident stagnation of the civilian labor force in the final segment of Chart I-12d during the current economic cycle. This stagnation is explained by cyclical factors similar to those analyzed by Lazear and Spletzer (2012JHJul22) that motivated an increasing population to drop out of the labor force instead of structural factors. Large segments of the potential labor force are not observed, constituting unobserved unemployment and of more permanent nature because those afflicted have been seriously discouraged from working by the lack of opportunities.

clip_image038

Chart I-12d, US, Labor Force, Thousands, NSA, 1948-2013

Sources: US Bureau of Labor Statistics

http://www.bls.gov/data/

http://www.bea.gov/iTable/index_nipa.cfm

ESVII Insufficient Job Creation. What is striking about the data in Table I-8 is that the numbers of monthly increases in jobs in 1983 and 1984 are several times higher than in 2010 to 2013. The civilian noninstitutional population grew by 39.6 percent from 174.215 million in 1983 to 243.284 million in 2012 and labor force higher by 38.9 percent, growing from 111.550 million in 1983 to 154.975 million in 2012. Total nonfarm payroll employment seasonally adjusted (SA) increased 203,000 in Nov 2013 and private payroll employment rose 196,000. The average number of nonfarm jobs created in Jan-Nov 2012 was 179,455 while the average number of nonfarm jobs created in Jan-Nov 2013 was 188,455, or increase by 5.0 percent. The average number of private jobs created in the US in Jan-Nov 2012 was 185,909 while the average in Jan-Nov 2013 was 190,091, or increase by 2.2 percent. The US labor force increased from 153.617 million in 2011 to 154.975 million in 2012 by 1.358 million or 113,167 per month. The average increase of nonfarm jobs in the ten months from Jan to Nov 2013 was 188,455, which is a rate of job creation inadequate to reduce significantly unemployment and underemployment in the United States because of 113,167 new entrants in the labor force per month with 28.1 million unemployed or underemployed. The difference between the average increase of 188,455 new private nonfarm jobs per month in the US from Jan to Nov 2013 and the 113,167 average monthly increase in the labor force from 2011 to 2012 is 75,288 monthly new jobs net of absorption of new entrants in the labor force. There are 28.1 million in job stress in the US currently. Creation of 75,288 new jobs per month net of absorption of new entrants in the labor force would require 373 months to provide jobs for the unemployed and underemployed (28.111 million divided by 75,288) or 31 years (373 divided by 12). The civilian labor force of the US in Nov 2013 not seasonally adjusted stood at 155.046 million with 10.271 million unemployed or effectively 18.452 million unemployed in this blog’s calculation by inferring those who are not searching because they believe there is no job for them for effective labor force of 163.227 million. Reduction of one million unemployed at the current rate of job creation without adding more unemployment requires 1.1 years (1 million divided by product of 75,288 by 12, which is 903,456). Reduction of the rate of unemployment to 5 percent of the labor force would be equivalent to unemployment of only 7.752 million (0.05 times labor force of 155.046 million) for new net job creation of 2.499 million (10.271 million unemployed minus 7.772 million unemployed at rate of 5 percent) that at the current rate would take 2.8 years (2.499 million divided by 0.903456). Under the calculation in this blog, there are 18.452 million unemployed by including those who ceased searching because they believe there is no job for them and effective labor force of 163.227 million. Reduction of the rate of unemployment to 5 percent of the labor force would require creating 10.164 million jobs net of labor force growth that at the current rate would take 11.4 years (18.452 million minus 0.05(163.227 million) = 10.291 million divided by 0.903456, using LF PART 66.2% and Total UEM in Table I-4). These calculations assume that there are no more recessions, defying United States economic history with periodic contractions of economic activity when unemployment increases sharply. The number employed in Nov 2013 was 144.775 million (NSA) or 2.540 million fewer people with jobs relative to the peak of 147.315 million in Jul 2007 while the civilian noninstitutional population increased from 231.958 million in Jul 2007 to 246.567 million in Nov 2013 or by 14.609 million. The number employed fell 1.7 percent from Jul 2007 to Nov 2013 while population increased 6.3 percent. There is actually not sufficient job creation in merely absorbing new entrants in the labor force because of those dropping from job searches, worsening the stock of unemployed or underemployed in involuntary part-time jobs.

There is current interest in past theories of “secular stagnation.” Alvin H. Hansen (1939, 4, 7; see Hansen 1938, 1941; for an early critique see Simons 1942) argues:

“Not until the problem of full employment of our productive resources from the long-run, secular standpoint was upon us, were we compelled to give serious con-sideration to those factors and forces in our economy which tend to make business recoveries weak and anaemic and which tend to prolong and deepen the course of depressions. This is the essence of secular stagnation-sick re-coveries which die in their infancy and depressions which feed on them-selves and leave a hard and seemingly immovable core of unemployment. Now the rate of population growth must necessarily play an important role in determining the character of the output; in other words, the com-position of the flow of final goods. Thus a rapidly growing population will demand a much larger per capita volume of new residential building con-struction than will a stationary population. A stationary population with its larger proportion of old people may perhaps demand more personal services; and the composition of consumer demand will have an important influence on the quantity of capital required. The demand for housing calls for large capital outlays, while the demand for personal services can be met without making large investment expenditures. It is therefore not unlikely that a shift from a rapidly growing population to a stationary or declining one may so alter the composition of the final flow of consumption goods that the ratio of capital to output as a whole will tend to decline.”

The argument that anemic population growth causes “secular stagnation” in the US (Hansen 1938, 1939, 1941) is as misplaced currently as in the late 1930s (for early dissent see Simons 1942). There is currently population growth in the ages of 16 to 24 years but not enough job creation and discouragement of job searches for all ages (http://cmpassocregulationblog.blogspot.com/2013/11/risks-of-zero-interest-rates-world.html). This is merely another case of theory without reality with dubious policy proposals.

Inferior performance of the US economy and labor markets is the critical current issue of analysis and policy design. Long-term economic performance in the United States consisted of trend growth of GDP at 3 percent per year and of per capita GDP at 2 percent per year as measured for 1870 to 2010 by Robert E Lucas (2011May). The economy returned to trend growth after adverse events such as wars and recessions. The key characteristic of adversities such as recessions was much higher rates of growth in expansion periods that permitted the economy to recover output, income and employment losses that occurred during the contractions. Over the business cycle, the economy compensated the losses of contractions with higher growth in expansions to maintain trend growth of GDP of 3 percent and of GDP per capita of 2 percent. US economic growth has been at only 2.3 percent on average in the cyclical expansion in the 17 quarters from IIIQ2009 to IIIQ2013. Boskin (2010Sep) measures that the US economy grew at 6.2 percent in the first four quarters and 4.5 percent in the first 12 quarters after the trough in the second quarter of 1975; and at 7.7 percent in the first four quarters and 5.8 percent in the first 12 quarters after the trough in the first quarter of 1983 (Professor Michael J. Boskin, Summer of Discontent, Wall Street Journal, Sep 2, 2010 http://professional.wsj.com/article/SB10001424052748703882304575465462926649950.html). There are new calculations using the revision of US GDP and personal income data since 1929 by the Bureau of Economic Analysis (BEA) (http://bea.gov/iTable/index_nipa.cfm http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp3q13_2nd.pdf http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp3q13_adv.pdf

http://bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_adv.pdf http://bea.gov/newsreleases/national/pi/2013/pdf/pi0613.pdf) and the second estimate of GDP for IIIQ2013 (http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp3q13_2nd.pdf). The average of 7.7 percent in the first four quarters of major cyclical expansions is in contrast with the rate of growth in the first four quarters of the expansion from IIIQ2009 to IIQ2010 of only 2.7 percent obtained by diving GDP of $14,738.0 billion in IIQ2010 by GDP of $14,356.9 billion in IIQ2009 {[$14,738.0/$14,356.9 -1]100 = 2.7%], or accumulating the quarter on quarter growth rates (Section I and earlier http://cmpassocregulationblog.blogspot.com/2013/11/global-financial-risk-mediocre-united.html). The expansion from IQ1983 to IVQ1985 was at the average annual growth rate of 5.7 percent, 5.4 percent from IQ1983 to IIIQ1986 and at 7.8 percent from IQ1983 to IVQ1983 (Section I and earlier http://cmpassocregulationblog.blogspot.com/2013/11/global-financial-risk-mediocre-united.html). As a result, there are 28.1 million unemployed or underemployed in the United States for an effective unemployment rate of 17.2 percent (Section II and earlier) http://cmpassocregulationblog.blogspot.com/2013/11/global-financial-risk-mediocre-united.html). Zero interest rates and quantitative easing have not provided the impulse for growth and were not required in past successful cyclical expansions.

Table I-8, US, Monthly Change in Jobs, Number SA

Month

1981

1982

1983

2008

2009

2010

Private

Jan

95

-327

225

14

-794

-13

-17

Feb

67

-6

-78

-85

-695

-40

-26

Mar

104

-129

173

-79

-830

154

111

Apr

74

-281

276

-215

-704

229

170

May

10

-45

277

-186

-352

521

102

Jun

196

-243

378

-169

-472

-130

94

Jul

112

-343

418

-216

-351

-86

103

Aug

-36

-158

-308

-270

-210

-37

129

Sep

-87

-181

1114

-459

-233

-43

113

Oct

-100

-277

271

-472

-170

228

188

Nov

-209

-124

352

-775

-21

144

154

Dec

-278

-14

356

-705

-220

95

114

     

1984

   

2011

Private

Jan

   

447

   

69

80

Feb

   

479

   

196

243

Mar

   

275

   

205

223

Apr

   

363

   

304

303

May

   

308

   

115

183

Jun

   

379

   

209

177

Jul

   

312

   

78

206

Aug

   

241

   

132

129

Sep

   

311

   

225

256

Oct

   

286

   

166

174

Nov

   

349

   

174

197

Dec

   

127

   

230

249

     

1985

   

2012

Private

Jan

   

266

   

311

323

Feb

   

124

   

271

265

Mar

   

346

   

205

208

Apr

   

195

   

112

120

May

   

274

   

125

152

Jun

   

145

   

87

78

Jul

   

189

   

153

177

Aug

   

193

   

165

131

Sep

   

204

   

138

118

Oct

   

187

   

160

217

Nov

   

209

   

247

256

Dec

   

168

   

219

224

     

1985

   

2013

Private

Jan

   

123

   

148

164

Feb

   

107

   

332

319

Mar

   

93

   

142

154

Apr

   

188

   

199

188

May

   

125

   

176

187

Jun

   

-93

   

172

194

Jul

   

318

   

89

100

Aug

   

113

   

238

207

Sep

   

346

   

175

168

Oct

   

187

   

200

214

Nov

   

186

   

203

196

Dec

   

204

       

Source: US Bureau of Labor Statistics http://www.bls.gov/

Charts numbered from I-38 to I-41 from the database of the Bureau of Labor Statistics provide a comparison of payroll survey data for the contractions and expansions in the 1980s and after 2007. Chart I-38 provides total nonfarm payroll jobs from 2001 to 2013. The sharp decline in total nonfarm jobs during the contraction after 2007 has been followed by initial stagnation and then inadequate growth in 2012 and 2013.

clip_image039

Chart I-38, US, Total Nonfarm Payroll Jobs SA 2001-2013

Source: US Bureau of Labor Statistics

http://www.bls.gov/data/

Chart I-39 provides total nonfarm jobs SA from 1979 to 1989. Recovery is strong throughout the decade with the economy growing at trend over the entire economic cycle.

clip_image040

Chart I-39, US, Total Nonfarm Payroll Jobs SA 1979-1989

Source: US Bureau of Labor Statistics

http://www.bls.gov/data/

Most job creation in the US is by the private sector. Chart I-40 shows the sharp destruction of private payroll jobs during the contraction after 2007. There has been growth after 2010 but insufficient to recover higher levels of employment prevailing before the contraction. At current rates, recovery of employment may spread over several years in contrast with past expansions of the business cycle in the US.

clip_image041

Chart I-40, US, Total Private Payroll Jobs SA 2001-2013

Source: US Bureau of Labor Statistics

http://www.bls.gov/data/

In contrast, growth of private payroll jobs in the US recovered vigorously during the expansion in 1983 through 1985, as shown in Chart I-41. Rapid growth of creation of private jobs continued throughout the 1980s.

clip_image042

Chart I-41, US, Total Private Payroll Jobs SA 1979-1989

Source: US Bureau of Labor Statistics

http://www.bls.gov/data/

ESVIII Stagnating Real Wages. Average hourly earnings of all US employees in the US in constant dollars of 1982-1984 from the dataset of the US Bureau of Labor Statistics (BLS) are provided in Table IB-4. Average hourly earnings fell 0.5 percent after adjusting for inflation in the 12 months ending in Mar 2012 and gained 0.6 percent in the 12 months ending in Apr 2012 but then lost 0.6 percent in the 12 months ending in May 2012. Average hourly earnings in the US in constant dollars of 1982-1984 increased 0.3 percent in the 12 months ending in Jun 2012 and 1.0 percent in Jul 2012 followed by 0.1 percent in Aug 2012 and 0.7 percent in Sep 2012. Average hourly earnings adjusted by inflation fell 1.2 percent in the 12 months ending in Oct 2012. Average hourly earnings adjusted by inflation increased 0.1 percent in the 12 months ending in Nov 2012 and 1.1 percent in the 12 months ending in Dec 2012 but fell 0.2 percent in the 12 months ending in Jan 2013 and stagnated with gain of 0.1 percent in the 12 months ending in Feb 2013. Average hourly earnings adjusted for inflation increased 0.4 percent in the 12 months ending in Mar 2013 and increased 0.2 percent in the 12 months ending in Apr 2013. Average hourly earnings adjusted for inflation increased 0.6 percent in the 12 months ending in May 2013 and 1.1 percent in the 12 months ending in Jun 2013. Average hourly earnings of all employees adjusted for inflation fell 0.7 percent in the 12 months ending in Jul 2013 and increased 0.7 percent in the 12 months ending in Aug 2013. Average hourly earnings adjusted for inflation increased 0.9 percent in the 12 months ending in Sep 2013 and increased 1.2 percent in the 12 months ending in Oct 2013. Table IB-4 confirms the trend of deterioration of purchasing power of average hourly earnings in 2011 and into 2012 with 12-month percentage declines in three of the first three months of 2012 (-1.1 percent in Jan, -1.1 percent in Feb and -0.5 percent in Mar), declines of 0.6 percent in May and 1.2 percent in Oct and increase in five (0.6 percent in Apr, 0.3 percent in Jun, 1.0 percent in Jul, 0.7 percent in Sep and 1.1 percent in Dec) and stagnation in two (0.1 percent in Aug and 0.1 percent in Nov). Average hourly earnings adjusted for inflation fell 0.2 percent in the 12 months ending in Jan 2013, stagnated with gain of 0.1 percent in the 12 months ending in Feb 2013 and gained 0.4 percent in the 12 months ending Mar 2013. Real average hourly earnings increased 0.2 percent in the 12 months ending in Apr 2013 and 0.6 percent in the 12 months ending in May 2013. Average hourly earnings increased 1.1 percent in the 12 months ending in Jun 2013 and fell 0.7 percent in the 12 months ending in Jul 2013. Annual data are revealing: -0.7 percent in 2008 during carry trades into commodity futures in a global recession, 3.2 percent in 2009 with reversal of carry trades, no change in 2010 and 2012 and decline by 1.1 percent in 2011. Annual average hourly earnings of all employees in the United States adjusted for inflation increased 1.4 percent from 2007 to 2012 at the yearly average rate of 0.3 percent (from $10.11 in 2007 to $10.25 in 2012 in dollars of 1982-1984 using data in http://www.bls.gov/data/). Those who still work bring back home a paycheck that buys fewer goods than a year earlier and savings in bank deposits do not pay anything because of financial repression (Section IB and earlier http://cmpassocregulationblog.blogspot.com/2013/11/global-financial-risk-mediocre-united.html).

Table IB-4, US, Average Hourly Earnings of All Employees NSA in Constant Dollars of 1982-1984

Year

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

2006

10.05

10.11

9.92

9.89

9.97

9.88

10.03

10.17

2007

10.14

10.18

10.02

9.99

10.08

10.03

10.16

10.08

2008

10.11

10.00

9.91

9.84

9.77

9.83

9.94

10.06

2009

10.47

10.40

10.32

10.20

10.23

10.29

10.30

10.32

2010

10.35

10.35

10.38

10.27

10.29

10.34

10.36

10.39

2011

10.26

10.22

10.22

10.12

10.17

10.10

10.17

10.30

2012

10.21

10.28

10.16

10.15

10.27

10.11

10.24

10.18

∆%12M

-0.5

0.6

-0.6

0.3

1.0

0.1

0.7

-1.2

2013

10.25

10.30

10.22

10.26

10.20

10.18

10.33

10.30

∆%12M

0.4

0.2

0.6

1.1

-0.7

0.7

0.9

1.2

Source: US Bureau of Labor Statistics http://www.bls.gov/

Chart IB-2 of the US Bureau of Labor Statistics plots average hourly earnings of all US employees in constant 1982-1984 dollars with evident decline from annual earnings of $10.36 in 2009 and $10.36 again in 2010 to $10.25 in 2011 and $10.25 again in 2012 or loss of 1.1 percent (data in http://www.bls.gov/data/). The economic welfare or wellbeing of United States workers deteriorated in a recovery without hiring (http://cmpassocregulationblog.blogspot.com/2013/11/risks-of-zero-interest-rates-world.html and earlier at http://cmpassocregulationblog.blogspot.com/2013/10/twenty-eight-million-unemployed-or.html), stagnating/declining real wages and 28.1 million unemployed or underemployed (Section I and earlier http://cmpassocregulationblog.blogspot.com/2013/11/global-financial-risk-mediocre-united.html) because of mediocre economic growth (Section I and earlier http://cmpassocregulationblog.blogspot.com/2013/11/global-financial-risk-mediocre-united.html).

clip_image043

Chart IB-2, US, Average Hourly Earnings of All Employees in Constant Dollars of 1982-1984, SA 2006-2013

Source: US Bureau of Labor Statistics http://www.bls.gov/

Chart IB-3 provides 12-month percentage changes of average hourly earnings of all employees in constant dollars of 1982-1984, that is, adjusted for inflation. There was sharp contraction of inflation-adjusted average hourly earnings of US employees during parts of 2007 and 2008. Rates of change in 12 months became positive in parts of 2009 and 2010 but then became negative again in 2011 and into 2012 with temporary increase in Apr 2012 that was reversed in May with another gain in Jun and Jul 2012 followed by stagnation in Aug 2012. There was marginal gain in Sep 2012 with sharp decline in Oct 2012, stagnation in Nov 2012, increase in Dec 2012 and renewed decrease in Jan 2013 with near stagnation in Feb 2013 followed by mild increase in Mar-Apr 2013. Hourly earnings adjusted for inflation increased in Jun 2013 and fell in Jul 2013, increasing in Aug-Oct 2013.

clip_image044

Chart IB-3, Average Hourly Earnings of All Employees NSA 12-Month Percent Change, 1982-1984 Dollars, NSA 2007-2013

Source: US Bureau of Labor Statistics http://www.bls.gov/

Average weekly earnings of all US employees in the US in constant dollars of 1982-1984 from the dataset of the US Bureau of Labor Statistics (BLS) are provided in Table IB-5. Average weekly earnings fell 3.2 percent after adjusting for inflation in the 12 months ending in Aug 2011, decreased 0.9 percent in the 12 months ending in Sep 2011 and increased 0.9 percent in the 12 months ending in Oct 2011. Average weekly earnings fell 1.0 percent in the 12 months ending in Nov 2011 and 0.3 in the 12 months ending in Dec 2011. Average weekly earnings declined 0.3 percent in the 12 months ending in Jan 2012 and 0.5 percent in the 12 months ending in Feb 2012. Average weekly earnings in constant dollars were virtually flat in Mar 2012 relative to Mar 2011, increasing 0.1 percent. Average weekly earnings in constant dollars increased 1.7 percent in Apr 2012 relative to Apr 2011 but fell 1.4 percent in May 2012 relative to May 2011, increasing 0.3 percent in the 12 months ending in Jun and 2.1 percent in Jul 2012. Real weekly earnings increased 0.4 percent in the 12 months ending in Aug 2012 and 2.1 percent in the 12 months ending in Sep 2012. Real weekly earnings fell 2.9 percent in the 12 months ending in Oct 2012 and increased 0.1 percent in the 12 months ending in Nov 2012 and 2.5 percent in the 12 months ending in Dec 2012. Real weekly earnings fell 1.6 percent in the 12 months ending in Jan 2013 and virtually stagnated with gain of 0.2 percent in the 12 months ending in Feb 2013, increasing 0.4 percent in the 12 months ending in Mar 2013. Real weekly earnings fell 1.0 percent in the 12 months ending in Apr 2013 and increased 0.6 percent in the 12 months ending in May 2013. Average weekly earnings increased 2.5 percent in the 12 months ending in Jun 2013 and fell 1.8 percent in the 12 months ending in Jul 2013. Real weekly earnings increased 1.0 percent in the 12 months ending in Aug 2013, 0.8 percent in the 12 months ending in Sep 2013 and 1.5 percent in the 12 months ending in Oct 2013. Table I-5 confirms the trend of deterioration of purchasing power of average weekly earnings in 2011 and into 2012 with oscillations according to carry trades causing world inflation waves (http://cmpassocregulationblog.blogspot.com/2013/11/risks-of-zero-interest-rates-world.html). On an annual basis, average weekly earnings in constant 1982-1984 dollars increased from $349.78 in 2007 to $353.66 in 2012, by 1.1 percent or at the average rate of 0.2 percent per year (data in http://www.bls.gov/data/). Annual average weekly earnings in constant dollars of $353.50 in 2010 were virtually unchanged at $353.66 in 2012. Those who still work bring back home a paycheck that buys fewer high-quality goods than a year earlier. The fractured US job market does not provide an opportunity for advancement as in past booms following recessions because of poor job creation with 28.1 million unemployed or underemployed (Section II and earlier http://cmpassocregulationblog.blogspot.com/2013/11/global-financial-risk-mediocre-united.html) in a recovery without hiring (http://cmpassocregulationblog.blogspot.com/2013/11/risks-of-zero-interest-rates-world.html).

Table IB-5, US, Average Weekly Earnings of All Employees in Constant Dollars of 1982-1984, NSA 2007-2013

Year

May

Jun

Jul

Aug

Sep

Oct

2006

340.12

342.08

347.97

341.76

346.19

354.88

2007

344.58

346.74

351.68

347.98

355.72

347.92

2008

340.93

343.40

337.06

340.18

341.83

345.95

2009

347.94

344.59

345.92

352.80

347.04

348.83

2010

356.97

350.13

352.02

358.90

353.27

356.47

2011

353.56

348.08

349.75

347.42

349.93

359.60

2012

348.65

349.28

357.26

348.93

357.44

349.20

∆%12M

-1.4

0.3

2.1

0.4

2.1

-2.9

2013

350.59

357.96

350.93

352.25

360.40

354.39

∆%12M

0.6

2.5

-1.8

1.0

0.8

1.5

Source: US Bureau of Labor Statistics http://www.bls.gov/

Chart IB-4 provides average weekly earnings of all employees in constant dollars of 1982-1984. The same pattern emerges of sharp decline during the contraction, followed by recovery in the expansion and continuing fall with oscillations caused by carry trades from zero interest rates into commodity futures from 2010 to 2011 and into 2012 and 2013.

clip_image045

Chart IB-4, US, Average Weekly Earnings of All Employees in Constant Dollars of 1982-1984, SA 2006-2013

Source: US Bureau of Labor Statistics http://www.bls.gov/

Chart IB-5 provides 12-month percentage changes of average weekly earnings of all employees in the US in constant dollars of 1982-1984. There is the same pattern of contraction during the global recession in 2008 and then again trend of deterioration in the recovery without hiring and inflation waves in 2011 and 2012. (http://cmpassocregulationblog.blogspot.com/2013/11/risks-of-zero-interest-rates-world.html).

clip_image046

Chart IB-5, US, Average Weekly Earnings of All Employees NSA in Constant Dollars of 1982-1984 12-Month Percent Change, NSA 2007-2013

Source: US Bureau of Labor Statistics http://www.bls.gov/

© Carlos M. Pelaez, 2009, 2010, 2011, 2012, 2013

No comments:

Post a Comment