Financial Risk, Recovery without Hiring, Ten Million Fewer Full-time Jobs, Collapse of United States Dynamism of Income Growth and Employment Creation, World Cyclical Slow Growth and Global Recession Risk
Carlos M. Pelaez
© Carlos M. Pelaez, 2009, 2010, 2011, 2012, 2013, 2014
Executive Summary
References
I Recovery without Hiring
IA1 Hiring Collapse
IA2 Labor Underutilization
ICA3 Ten Million Fewer Full-time Jobs
IA4 Theory and Reality of Cyclical Slow Growth Not Secular Stagnation: Youth and
Middle-Age Unemployment
II Collapse of United States Dynamism of Income Growth and Employment Creation
III World Financial Turbulence
IIIA Financial Risks
IIIE Appendix Euro Zone Survival Risk
IIIF Appendix on Sovereign Bond Valuation
IV Global Inflation
V World Economic Slowdown
VA United States
VB Japan
VC China
VD Euro Area
VE Germany
VF France
VG Italy
VH United Kingdom
VI Valuation of Risk Financial Assets
VII Economic Indicators
VIII Interest Rates
IX Conclusion
References
Appendixes
Appendix I The Great Inflation
IIIB Appendix on Safe Haven Currencies
IIIC Appendix on Fiscal Compact
IIID Appendix on European Central Bank Large Scale Lender of Last Resort
IIIG Appendix on Deficit Financing of Growth and the Debt Crisis
IIIGA Monetary Policy with Deficit Financing of Economic Growth
IIIGB Adjustment during the Debt Crisis of the 1980s
I Recovery without Hiring. Professor Edward P. Lazear (2012Jan19) at Stanford University finds that recovery of hiring in the US to peaks attained in 2007 requires an increase of hiring by 30 percent while hiring levels increased by only 4 percent from Jan 2009 to Jan 2012. The high level of unemployment with low level of hiring reduces the statistical probability that the unemployed will find a job. According to Lazear (2012Jan19), the probability of finding a new job in early 2012 is about one third of the probability of finding a job in 2007. Improvements in labor markets have not increased the probability of finding a new job. Lazear (2012Jan19) quotes an essay coauthored with James R. Spletzer in the American Economic Review (Lazear and Spletzer 2012Mar, 2012May) on the concept of churn. A dynamic labor market occurs when a similar amount of workers is hired as those who are separated. This replacement of separated workers is called churn, which explains about two-thirds of total hiring. Typically, wage increases received in a new job are higher by 8 percent. Lazear (2012Jan19) argues that churn has declined 35 percent from the level before the recession in IVQ2007. Because of the collapse of churn, there are no opportunities in escaping falling real wages by moving to another job. As this blog argues, there are meager chances of escaping unemployment because of the collapse of hiring and those employed cannot escape falling real wages by moving to another job (Section I and earlier http://cmpassocregulationblog.blogspot.com/2014/06/financialgeopolitical-risks-recovery.html). Lazear and Spletzer (2012Mar, 1) argue that reductions of churn reduce the operational effectiveness of labor markets. Churn is part of the allocation of resources or in this case labor to occupations of higher marginal returns. The decline in churn can harm static and dynamic economic efficiency. Losses from decline of churn during recessions can affect an economy over the long-term by preventing optimal growth trajectories because resources are not used in the occupations where they provide highest marginal returns. Lazear and Spletzer (2012Mar 7-8) conclude that: “under a number of assumptions, we estimate that the loss in output during the recession [of 2007 to 2009] and its aftermath resulting from reduced churn equaled $208 billion. On an annual basis, this amounts to about .4% of GDP for a period of 3½ years.”
There are two additional facts discussed below: (1) there are about ten million fewer full-time jobs currently than before the recession of 2008 and 2009; and (2) the extremely high and rigid rate of youth unemployment is denying an early start to young people ages 16 to 24 years while unemployment of ages 45 years or over has swelled. There are four subsections. IA1 Hiring Collapse provides the data and analysis on the weakness of hiring in the United States economy. IA2 Labor Underutilization provides the measures of labor underutilization of the Bureau of Labor Statistics (BLS). Statistics on the decline of full-time employment are in IA3 Ten Million Fewer Full-time Jobs. IA4 Theory and Reality of Cyclical Slow Growth Not Secular Stagnation: Youth and Middle-Age Unemployment provides the data on high unemployment of ages 16 to 24 years and of ages 45 years or over.
IA1 Hiring Collapse. An important characteristic of the current fractured labor market of the US is the closing of the avenue for exiting unemployment and underemployment normally available through dynamic hiring. Another avenue that is closed is the opportunity for advancement in moving to new jobs that pay better salaries and benefits again because of the collapse of hiring in the United States. Those who are unemployed or underemployed cannot find a new job even accepting lower wages and no benefits. The employed cannot escape declining inflation-adjusted earnings because there is no hiring. The objective of this section is to analyze hiring and labor underutilization in the United States.
Blanchard and Katz (1997, 53 consider an appropriate measure of job stress:
“The right measure of the state of the labor market is the exit rate from unemployment, defined as the number of hires divided by the number unemployed, rather than the unemployment rate itself. What matters to the unemployed is not how many of them there are, but how many of them there are in relation to the number of hires by firms.”
The natural rate of unemployment and the similar NAIRU are quite difficult to estimate in practice (Ibid; see Ball and Mankiw 2002).
The Bureau of Labor Statistics (BLS) created the Job Openings and Labor Turnover Survey (JOLTS) with the purpose that (http://www.bls.gov/jlt/jltover.htm#purpose):
“These data serve as demand-side indicators of labor shortages at the national level. Prior to JOLTS, there was no economic indicator of the unmet demand for labor with which to assess the presence or extent of labor shortages in the United States. The availability of unfilled jobs—the jobs opening rate—is an important measure of tightness of job markets, parallel to existing measures of unemployment.”
The BLS collects data from about 16,000 US business establishments in nonagricultural industries through the 50 states and DC. The data are released monthly and constitute an important complement to other data provided by the BLS (see also Lazear and Spletzer 2012Mar, 6-7).
The Bureau of Labor Statistics (BLS) revised on Mar 11, 2014 “job openings, hires and separations data to incorporate the annual update to the Current Employment Statistics employment estimates and the JOLTS seasonal adjustment factors. Unadjusted data and seasonally adjusted data from December 2000 forward are subject to revisions” (http://www.bls.gov/jlt/). Hiring in the nonfarm sector (HNF) has declined from 63.3 million in 2006 to 54.2 million in 2013 or by 9.1 million while hiring in the private sector (HP) has declined from 59.1 million in 2006 to 50.7 million in 2013 or by 8.4 million, as shown in Table I-1. The ratio of nonfarm hiring to employment (RNF) has fallen from 47.0 in 2005 to 39.7 in 2013 and in the private sector (RHP) from 52.7 in 2005 to 44.3 in 2013. Hiring has not recovered as in previous cyclical expansions because of the low rate of economic growth in the current cyclical expansion. Long-term economic performance in the United States consisted of trend growth of GDP at 3 percent per year and of per capita GDP at 2 percent per year as measured for 1870 to 2010 by Robert E Lucas (2011May). The economy returned to trend growth after adverse events such as wars and recessions. The key characteristic of adversities such as recessions was much higher rates of growth in expansion periods that permitted the economy to recover output, income and employment losses that occurred during the contractions. Over the business cycle, the economy compensated the losses of contractions with higher growth in expansions to maintain trend growth of GDP of 3 percent and of GDP per capita of 2 percent. US economic growth has been at only 2.1 percent on average in the cyclical expansion in the 19 quarters from IIIQ2009 to IQ2014. Boskin (2010Sep) measures that the US economy grew at 6.2 percent in the first four quarters and 4.5 percent in the first 12 quarters after the trough in the second quarter of 1975; and at 7.7 percent in the first four quarters and 5.8 percent in the first 12 quarters after the trough in the first quarter of 1983 (Professor Michael J. Boskin, Summer of Discontent, Wall Street Journal, Sep 2, 2010 http://professional.wsj.com/article/SB10001424052748703882304575465462926649950.html). There are new calculations using the revision of US GDP and personal income data since 1929 by the Bureau of Economic Analysis (BEA) (http://bea.gov/iTable/index_nipa.cfm) and the third estimate of GDP for IQ2014 (http://www.bea.gov/newsreleases/national/gdp/2014/pdf/gdp1q14_3rd.pdf). The average of 7.7 percent in the first four quarters of major cyclical expansions is in contrast with the rate of growth in the first four quarters of the expansion from IIIQ2009 to IIQ2010 of only 2.7 percent obtained by dividing GDP of $14,738.0 billion in IIQ2010 by GDP of $14,356.9 billion in IIQ2009 {[$14,738.0/$14,356.9 -1]100 = 2.7%], or accumulating the quarter on quarter growth rates (http://cmpassocregulationblog.blogspot.com/2014/06/financial-indecision-mediocre-cyclical.html and earlier http://cmpassocregulationblog.blogspot.com/2014/05/financial-volatility-mediocre-cyclical.html). The expansion from IQ1983 to IVQ1985 was at the average annual growth rate of 5.9 percent, 5.4 percent from IQ1983 to IIIQ1986, 5.2 percent from IQ1983 to IVQ1986, 5.0 percent from IQ1983 to IQ1987, 5.0 percent from IQ1983 to IIQ1987, 4.9 percent from IQ1983 to IIIQ1987 and at 7.8 percent from IQ1983 to IVQ1983 (http://cmpassocregulationblog.blogspot.com/2014/06/financial-indecision-mediocre-cyclical.html and earlier http://cmpassocregulationblog.blogspot.com/2014/06/financial-instability-mediocre-cyclical.html). The US maintained growth at 3.0 percent on average over entire cycles with expansions at higher rates compensating for contractions. Growth at trend in the entire cycle from IVQ2007 to IQ2014 would have accumulated to 21.2 percent. GDP in IQ2014 would be $18,172.7 billion (in constant dollars of 2009) if the US had grown at trend, which is higher by $2,348.5 billion than actual $15,824.2 billion. There are about two trillion dollars of GDP less than at trend, explaining the 26.8 million unemployed or underemployed equivalent to actual unemployment of 16.3 percent of the effective labor force (http://cmpassocregulationblog.blogspot.com/2014/07/financial-valuations-twenty-seven.html and earlier http://cmpassocregulationblog.blogspot.com/2014/06/financial-risks-rules-discretionary.html). US GDP in IQ2014 is 12.9 percent lower than at trend. US GDP grew from $14,996.1 billion in IVQ2007 in constant dollars to $15,842.2 billion in IQ2014 or 5.5 percent at the average annual equivalent rate of 0.8 percent. Cochrane (2014Jul2) estimates US GDP at more than 10 percent below trend. The US missed the opportunity to grow at higher rates during the expansion and it is difficult to catch up because growth rates in the final periods of expansions tend to decline. The US missed the opportunity for recovery of output and employment always afforded in the first four quarters of expansion from recessions. Zero interest rates and quantitative easing were not required or present in successful cyclical expansions and in secular economic growth at 3.0 percent per year and 2.0 percent per capita as measured by Lucas (2011May). There is cyclical uncommonly slow growth in the US instead of allegations of secular stagnation.
Table I-1, US, Annual Total Nonfarm Hiring (HNF) and Total Private Hiring (HP) in the US in Thousands and Percentage of Total Employment
HNF | Rate RNF | HP | Rate HP | |
2001 | 62,633 | 47.4 | 58,501 | 52.7 |
2002 | 58,479 | 44.8 | 54,665 | 50.1 |
2003 | 56,949 | 43.7 | 53,584 | 49.3 |
2004 | 60,263 | 45.7 | 56,573 | 51.4 |
2005 | 62,951 | 47.0 | 59,179 | 52.7 |
2006 | 63,327 | 46.4 | 59,128 | 51.7 |
2007 | 62,104 | 45.0 | 57,797 | 49.9 |
2008 | 54,745 | 39.9 | 51,316 | 44.8 |
2009 | 45,931 | 35.0 | 42,703 | 39.3 |
2010 | 48,743 | 37.4 | 44,914 | 41.7 |
2011 | 50,295 | 38.1 | 47,183 | 43.0 |
2012 | 52,360 | 39.0 | 48,915 | 43.6 |
2013 | 54,191 | 39.7 | 50,718 | 44.3 |
Source: Bureau of Labor Statistics
Chart I-1 shows the annual level of total nonfarm hiring (HNF) that collapsed during the global recession after 2007 in contrast with milder decline in the shallow recession of 2001. Nonfarm hiring has not recovered, remaining at a depressed level.
Chart I-1, US, Level Total Nonfarm Hiring (HNF), Annual, 2001-2013
Source: US Bureau of Labor Statistics
Chart I-2 shows the ratio or rate of nonfarm hiring to employment (RNF) that also fell much more in the recession of 2007 to 2009 than in the shallow recession of 2001. Recovery is weak in the current environment of cyclical slow growth.
Chart I-2, US, Rate Total Nonfarm Hiring (HNF), Annual, 2001-2015
Source: US Bureau of Labor Statistics
Yearly percentage changes of total nonfarm hiring (HNF) are provided in Table I-2. There were much milder declines in 2002 of 6.6 percent and 2.6 percent in 2003 followed by strong rebounds of 5.8 percent in 2004 and 4.5 percent in 2005. In contrast, the contractions of nonfarm hiring in the recession after 2007 were much sharper in percentage points: 1.9 in 2007, 11.8 in 2008 and 16.1 percent in 2009. On a yearly basis, nonfarm hiring grew 6.1 percent in 2010 relative to 2009, 3.2 percent in 2011, 4.1 percent in 2012 and 3.5 percent in 2013. The relatively large length of 18 quarters of the current expansion reduces the likelihood of significant recovery of hiring levels in the United States because lower rates of growth and hiring in the final phase of expansions.
Table I-2, US, Annual Total Nonfarm Hiring (HNF), Annual Percentage Change, 2002-2013
Year | Annual ∆% |
2002 | -6.6 |
2003 | -2.6 |
2004 | 5.8 |
2005 | 4.5 |
2006 | 0.6 |
2007 | -1.9 |
2008 | -11.8 |
2009 | -16.1 |
2010 | 6.1 |
2011 | 3.2 |
2012 | 4.1 |
2013 | 3.5 |
Source: US Bureau of Labor Statistics
Total private hiring (HP) yearly data are provided in Chart I-4. There has been sharp contraction of total private hiring in the US and only milder recovery from 2010 to 2013.
Chart I-4, US, Total Nonfarm Hiring Level, Annual, ∆%, 2001-2013
Source: Bureau of Labor Statistics
Chart I-5 plots the rate of total private hiring relative to employment (RHP). The rate collapsed during the global recession after 2007 with insufficient recovery.
Chart I-5, US, Total Private Hiring, Annual, 2001-2013
Source: Bureau of Labor Statistics
Chart I-5A plots the rate of total private hiring relative to employment (RHP). The rate collapsed during the global recession after 2007 with insufficient recovery.
Chart I-5A, US, Rate Total Private Hiring Level, Annual, 2001-2013
Source: Bureau of Labor Statistics
Total nonfarm hiring (HNF), total private hiring (HP) and their respective rates are provided for the month of May in the years from 2001 to 2014 in Table I-3. Hiring numbers are in thousands. There is moderate recovery in HNF from 4143 thousand (or 4.1 million) in May 2009 to 4841 thousand in May 2010, 4656 thousand in May 2011, 4992 thousand in May 2012, 5131 thousand in May 2013 and 5329 thousand in May 2014 for cumulative gain of 28.6 percent at average rate of 5.2 percent per year. HP rose from 3871 thousand in May 2009 to 4083 thousand in May 2010, 4376 thousand in May 2011, 4670 thousand in May 2012, 4829 thousand in May 2013 and 5005 thousand in May 2014 for cumulative gain of 29.3 percent at the average yearly rate of 5.3 percent. HNF has fallen from 5955 thousand in May 2006 to 5329 thousand in May 2014 or by 10.5 percent. HP has fallen from 5599 thousand in May 2006 to 5005 thousand in May 2014 or by 10.6 percent. The civilian noninstitutional population of the US, or individuals in condition to work, rose from 228.815 million in 2006 to 245.679 million in 2013 or by 16.864 million and the civilian labor force from 151.428 million in 2006 to 155.389 million in 2013 or by 3.961 million (http://www.bls.gov/data/). The number of nonfarm hires in the US fell from 63.327 million in 2006 to 54.191 million in 2013 or by 9.136 million and the number of private hires fell from 59.128 million in 2006 to 50.718 million in 2013 or by 8.410 million (http://www.bls.gov/jlt/). Private hiring of 59.128 million in 2006 was equivalent to 25.8 percent of the civilian noninstitutional population of 228.815, or those in condition of working, falling to 50.718 million in 2013 or 20.6 percent of the civilian noninstitutional population of 245.679 million in 2013. The percentage of hiring in civilian noninstitutional population of 25.8 percent in 2006 would correspond to 63.385 million of hiring in 2013, which would be 12.667 million higher than actual 50.718 million in 2013. Cyclical slow growth over the entire business cycle from IVQ2007 to the present in comparison with earlier cycles and long-term trend (http://cmpassocregulationblog.blogspot.com/2014/06/financial-indecision-mediocre-cyclical.html) explains the fact that there are many million fewer hires in the US than before the global recession. The labor market continues to be fractured, failing to provide an opportunity to exit from unemployment/underemployment or to find an opportunity for advancement away from declining inflation-adjusted earnings.
Table I-3, US, Total Nonfarm Hiring (HNF) and Total Private Hiring (HP) in the US in
Thousands and in Percentage of Total Employment Not Seasonally Adjusted
HNF | Rate RNF | HP | Rate HP | |
2001 May | 5811 | 4.4 | 5437 | 4.9 |
2002 May | 5305 | 4.0 | 4956 | 4.5 |
2003 May | 5023 | 3.8 | 4740 | 4.4 |
2004 May | 5385 | 4.1 | 5095 | 4.6 |
2005 May | 5720 | 4.3 | 5403 | 4.8 |
2006 May | 5955 | 4.4 | 5599 | 4.9 |
2007 May | 5728 | 4.1 | 5335 | 4.6 |
2008 May | 5088 | 3.7 | 4761 | 4.1 |
2009 May | 4143 | 3.1 | 3871 | 3.6 |
2010 May | 4841 | 3.7 | 4083 | 3.8 |
2011 May | 4656 | 3.5 | 4376 | 4.0 |
2012 May | 4992 | 3.7 | 4670 | 4.2 |
2013 May | 5131 | 3.8 | 4829 | 4.2 |
2014 May | 5329 | 3.8 | 5005 | 4.3 |
Source: Bureau of Labor Statistics
Chart I-6 provides total nonfarm hiring on a monthly basis from 2001 to 2014. Nonfarm hiring rebounded in early 2010 but then fell and stabilized at a lower level than the early peak not-seasonally adjusted (NSA) of 4841 in May 2010 until it surpassed it with 4975 in Jun 2011 but declined to 3084 in Dec 2012. Nonfarm hiring fell to 3012 in Dec 2011 from 3810 in Nov and to revised 3614 in Feb 2012, increasing to 4220 in Mar 2012, 3084 in Dec 2012 and 4223 in Jan 2013 and declining to 3861 in Feb 2013. Nonfarm hires not seasonally adjusted increased to 4165 in Nov 2013 and 3271 in Dec 2013. Nonfarm hires reached 5329 in May 2014. Chart I-6 provides seasonally adjusted (SA) monthly data. The number of seasonally-adjusted hires in Oct 2011 was 4237 thousand, increasing to revised 4446 thousand in Feb 2012, or 4.9 percent, moving to 4343 in Dec 2012 for cumulative increase of 2.0 percent from 4256 in Dec 2011 and 4578 in Dec 2013 for increase of 5.4 percent relative to 4343 in Dec 2012. The number of hires not seasonally adjusted was 4975 in Jun 2011, falling to 3012 in Dec 2011 but increasing to 4112 in Jan 2012 and declining to 3084 in Dec 2012. The number of nonfarm hiring not seasonally adjusted fell by 39.5 percent from 4975 in Jun 2011 to 3012 in Dec 2011 and fell 38.7 percent from 5035 in Jun 2012 to 3084 in Dec 2012 in a yearly-repeated seasonal pattern. The number of nonfarm hires not seasonally adjusted fell from 5095 in Jun 2013 to 3271 in Dec 2013, or decline of 35.8 percent, showing strong seasonality.
Chart I-6, US, Total Nonfarm Hiring (HNF), 2001-2014 Month SA
Source: Bureau of Labor Statistics
Similar behavior occurs in the rate of nonfarm hiring in Chart I-7. Recovery in early 2010 was followed by decline and stabilization at a lower level but with stability in monthly SA estimates of 3.2 in Aug 2011 to 3.2 in Jan 2012, increasing to 3.3 in May 2012 and falling to 3.2 in Jun 2012. The rate stabilized at 3.2 in Jul 2012, increasing to 3.3 in Aug 2012 but falling to 3.2 in Dec 2012 and 3.3 in Dec 2013. The rate not seasonally adjusted fell from 3.7 in Jun 2011 to 2.3 in Dec 2011, climbing to 3.7 in Jun 2012 but falling to 2.3 in Dec 2012. The rate of nonfarm hires not seasonally adjusted fell from 3.7 in Jun 2013 to 2.4 in Dec 2013. Rates of nonfarm hiring NSA were in the range of 2.7 (Dec) to 4.4 (Jun) in 2006.
Chart I-7, US, Rate Total Nonfarm Hiring, Month SA 2001-2014
Source: Bureau of Labor Statistics
There is only milder improvement in total private hiring shown in Chart I-8. Hiring private (HP) rose in 2010 with stability and renewed increase in 2011 followed by almost stationary series in 2012. The number of private hiring seasonally adjusted fell from 4057 thousand in Sep 2011 to 3962 in Dec 2011 or by 2.3 percent, decreasing to 3998 in Jan 2012 or decline by 1.5 percent relative to the level in Sep 2011. Private hiring fell to 3959 in Sep 2012 or lower by 2.4 percent relative to Sep 2011, moving to 4061 in Dec 2012 for increase of 1.6 percent relative to 3998 in Jan 2012. The number of private hiring not seasonally adjusted fell from 4600 in Jun 2011 to 2833 in Dec 2011 or by 38.4 percent, reaching 3853 in Jan 2012 or decline of 16.2 percent relative to Jun 2011 and moving to 2911 in Dec 2012 or 37.1 percent lower relative to 4629 in Jun 2012. Hires fell from 4706 in Jun 2013 to 3098 in Dec 2013. Companies reduce hiring in the latter part of the year that explains the high seasonality in year-end employment data. For example, NSA private hiring fell from 5567 in Jun 2006 to 3568 in Dec 2006 or by 35.9 percent. Private hiring NSA data are useful in showing the huge declines from the period before the global recession. In Jul 2006, private hiring NSA was 5501, declining to 4326 in Jul 2011 or by 21.4 percent and to 4354 in Jul 2012 or lower by 20.9 percent relative to Jul 2006. Private hiring NSA fell from 5599 in May 2006 to 5005 in May 2014 or 10.6 percent. Private hiring fell from 5501 in Jul 2006 to 4632 in Jul 2013 or 15.8 percent. The conclusion is that private hiring in the US is around 20 percent below the hiring before the global recession while the noninstitutional population of the United States has grown from 228.815 million in 2006 to 245.679 million in 2013, by 16.864 million or 7.4 percent. The main problem in recovery of the US labor market has been the low rate of GDP growth. Long-term economic performance in the United States consisted of trend growth of GDP at 3 percent per year and of per capita GDP at 2 percent per year as measured for 1870 to 2010 by Robert E Lucas (2011May). The economy returned to trend growth after adverse events such as wars and recessions. The key characteristic of adversities such as recessions was much higher rates of growth in expansion periods that permitted the economy to recover output, income and employment losses that occurred during the contractions. Over the business cycle, the economy compensated the losses of contractions with higher growth in expansions to maintain trend growth of GDP of 3 percent and of GDP per capita of 2 percent.
Chart I-8, US, Total Private Hiring Month SA 2001-2014
Source: Bureau of Labor Statistics
Chart I-9 shows similar behavior in the rate of private hiring. The rate in 2011 in monthly SA data did not rise significantly above the peak in 2010. The rate seasonally adjusted fell from 3.7 in Sep 2011 to 3.6 in Dec 2011 and reached 3.6 in Dec 2012 and 3.7 in Dec 2013. The rate not seasonally adjusted (NSA) fell from 3.7 in Sep 2011 to 2.5 in Dec 2011, increasing to 3.8 in Oct 2012 but falling to 2.6 in Dec 2012 and 3.4 in Mar 2013. The NSA rate of private hiring fell from 4.8 in Jul 2006 to 3.4 in Aug 2009 but recovery was insufficient to only 3.9 in Aug 2012, 2.6 in Dec 2012 and 2.7 in Dec 2013. The NSA rate increased to 4.3 in May 2014.
Chart I-9, US, Rate Total Private Hiring Month SA 2001-2014
Source: Bureau of Labor Statistics
The JOLTS report of the Bureau of Labor Statistics also provides total nonfarm job openings (TNF JOB), TNF JOB rate and TNF LD (layoffs and discharges) shown in Table I-4 for the month of May from 2001 to 2014. The final column provides annual TNF LD for the years from 2001 to 2013. Nonfarm job openings (TNF JOB) increased from a peak of 4523 in May 2007 to 4694 in May 2014 or by 3.8 percent while the rate increased from 3.2 to 3.3. Nonfarm layoffs and discharges (TNF LD) rose from 1657 in May 2006 to 1902 in May 2009 or by 14.8 percent. The annual data show layoffs and discharges rising from 20.9 million in 2006 to 26.4 million in 2009 or by 26.3 percent. Business pruned payroll jobs to survive the global recession but there has not been hiring because of the low rate of GDP growth. Long-term economic performance in the United States consisted of trend growth of GDP at 3 percent per year and of per capita GDP at 2 percent per year as measured for 1870 to 2010 by Robert E Lucas (2011May). The economy returned to trend growth after adverse events such as wars and recessions. The key characteristic of adversities such as recessions was much higher rates of growth in expansion periods that permitted the economy to recover output, income and employment losses that occurred during the contractions. Over the business cycle, the economy compensated the losses of contractions with higher growth in expansions to maintain trend growth of GDP of 3 percent and of GDP per capita of 2 percent. US economic growth has been at only 2.1 percent on average in the cyclical expansion in the 19 quarters from IIIQ2009 to IQ2014. Boskin (2010Sep) measures that the US economy grew at 6.2 percent in the first four quarters and 4.5 percent in the first 12 quarters after the trough in the second quarter of 1975; and at 7.7 percent in the first four quarters and 5.8 percent in the first 12 quarters after the trough in the first quarter of 1983 (Professor Michael J. Boskin, Summer of Discontent, Wall Street Journal, Sep 2, 2010 http://professional.wsj.com/article/SB10001424052748703882304575465462926649950.html). There are new calculations using the revision of US GDP and personal income data since 1929 by the Bureau of Economic Analysis (BEA) (http://bea.gov/iTable/index_nipa.cfm) and the third estimate of GDP for IQ2014 (http://www.bea.gov/newsreleases/national/gdp/2014/pdf/gdp1q14_3rd.pdf). The average of 7.7 percent in the first four quarters of major cyclical expansions is in contrast with the rate of growth in the first four quarters of the expansion from IIIQ2009 to IIQ2010 of only 2.7 percent obtained by dividing GDP of $14,738.0 billion in IIQ2010 by GDP of $14,356.9 billion in IIQ2009 {[$14,738.0/$14,356.9 -1]100 = 2.7%], or accumulating the quarter on quarter growth rates (http://cmpassocregulationblog.blogspot.com/2014/06/financial-indecision-mediocre-cyclical.html and earlier http://cmpassocregulationblog.blogspot.com/2014/05/financial-volatility-mediocre-cyclical.html). The expansion from IQ1983 to IVQ1985 was at the average annual growth rate of 5.9 percent, 5.4 percent from IQ1983 to IIIQ1986, 5.2 percent from IQ1983 to IVQ1986, 5.0 percent from IQ1983 to IQ1987, 5.0 percent from IQ1983 to IIQ1987, 4.9 percent from IQ1983 to IIIQ1987 and at 7.8 percent from IQ1983 to IVQ1983 (http://cmpassocregulationblog.blogspot.com/2014/06/financial-indecision-mediocre-cyclical.html and earlier http://cmpassocregulationblog.blogspot.com/2014/06/financial-instability-mediocre-cyclical.html). The US maintained growth at 3.0 percent on average over entire cycles with expansions at higher rates compensating for contractions. Growth at trend in the entire cycle from IVQ2007 to IQ2014 would have accumulated to 21.2 percent. GDP in IQ2014 would be $18,172.7 billion (in constant dollars of 2009) if the US had grown at trend, which is higher by $2,348.5 billion than actual $15,824.2 billion. There are about two trillion dollars of GDP less than at trend, explaining the 26.8 million unemployed or underemployed equivalent to actual unemployment of 16.3 percent of the effective labor force (http://cmpassocregulationblog.blogspot.com/2014/07/financial-valuations-twenty-seven.html and earlier http://cmpassocregulationblog.blogspot.com/2014/06/financial-risks-rules-discretionary.html). US GDP in IQ2014 is 12.9 percent lower than at trend. US GDP grew from $14,996.1 billion in IVQ2007 in constant dollars to $15,842.2 billion in IQ2014 or 5.5 percent at the average annual equivalent rate of 0.8 percent. Cochrane (2014Jul2) estimates US GDP at more than 10 percent below trend. The US missed the opportunity to grow at higher rates during the expansion and it is difficult to catch up because growth rates in the final periods of expansions tend to decline. The US missed the opportunity for recovery of output and employment always afforded in the first four quarters of expansion from recessions. Zero interest rates and quantitative easing were not required or present in successful cyclical expansions and in secular economic growth at 3.0 percent per year and 2.0 percent per capita as measured by Lucas (2011May). There is cyclical uncommonly slow growth in the US instead of allegations of secular stagnation.
Table I-4, US, Total Nonfarm Job Openings and Total Nonfarm Layoffs and Discharges, Thousands NSA
TNF JOB | TNF JOB | TNF LD | TNF LD | |
May 2001 | 4485 | 3.3 | 1647 | 24138 |
May 2002 | 3555 | 2.6 | 1617 | 22706 |
May 2003 | 3215 | 2.4 | 1634 | 23490 |
May 2004 | 3658 | 2.7 | 1545 | 22668 |
May 2005 | 3813 | 2.8 | 1610 | 22243 |
May 2006 | 4414 | 3.1 | 1657 | 20896 |
May 2007 | 4523 | 3.2 | 1487 | 21958 |
May 2008 | 4002 | 2.8 | 1609 | 24028 |
May 2009 | 2411 | 1.8 | 1902 | 26444 |
May 2010 | 2928 | 2.2 | 1607 | 21829 |
May 2011 | 3061 | 2.3 | 1595 | 20805 |
May 2012 | 3734 | 2.7 | 1735 | 20892 |
May 2013 | 3885 | 2.8 | 1661 | 19964 |
May 2014 | 4694 | 3.3 | 1470 |
Notes: TNF JOB: Total Nonfarm Job Openings; LD: Layoffs and Discharges
Source: Bureau of Labor Statistics
Chart I-10 shows monthly job openings rising from the trough in 2009 to a high in the beginning of 2010. Job openings then stabilized into 2011 but have surpassed the peak of 3080 seasonally adjusted in Apr 2010 with 3646 seasonally adjusted in Dec 2012, which is higher by 18.4 percent relative to Apr 2010 but lower by 2.9 percent relative to 3755 in Nov 2012 and lower by 4.7 percent than 3827 in Mar 2012. Nonfarm job openings increased from 3646 in Dec 2012 to 3914 in Dec 2013 or by 7.4 percent. The high of job openings not seasonally adjusted was 3428 in Apr 2010 that was surpassed by 3661 in Jul 2011, increasing to 3939 in Oct 2012 but declining to 3152 in Dec 2012 and decreasing to 3387 in Dec 2013. The level of job openings not seasonally adjusted fell to 3152 in Dec 2012 or by 21.3 percent relative to 4005 in Apr 2012. There is here again the strong seasonality of year-end labor data. Job openings fell from 4209 in Apr 2013 to 3387 in Dec 2013, showing strong seasonal effects. The level of job openings of 4694 in May 2014 NSA is higher by 3.8 percent relative to 4523 in May 2007. The main problem in recovery of the US labor market has been the low rate of GDP growth. Long-term economic performance in the United States consisted of trend growth of GDP at 3 percent per year and of per capita GDP at 2 percent per year as measured for 1870 to 2010 by Robert E Lucas (2011May). The economy returned to trend growth after adverse events such as wars and recessions. The key characteristic of adversities such as recessions was much higher rates of growth in expansion periods that permitted the economy to recover output, income and employment losses that occurred during the contractions. Over the business cycle, the economy compensated the losses of contractions with higher growth in expansions to maintain trend growth of GDP of 3 percent and of GDP per capita of 2 percent.
Chart I-10, US Job Openings, Thousands NSA, 2001-2014
Source: US Bureau of Labor Statistics
The rate of job openings in Chart I-11 shows similar behavior. The rate seasonally adjusted increased from 2.2 in Jan 2011 to 2.6 in Dec 2011, 2.6 in Dec 2012 and 2.8 in Dec 2013. The rate seasonally adjusted stood at 3.2 in May 2014. The rate not seasonally adjusted rose from the high of 2.6 in Apr 2010 to 3.0 in Apr 2013 and 2.6 in Nov 2013. The rate of job openings NSA fell from 3.3 in Jul 2007 to 1.6 in Nov-Dec 2009, recovering insufficiently to 3.3 in May 2014.
Chart I-11, US, Rate of Job Openings, NSA, 2001-2014
Source: US Bureau of Labor Statistics
Total separations are shown in Chart I-12. Separations are much lower in 2012-14 than before the global recession but hiring has not recovered.
Chart I-12, US, Total Nonfarm Separations, Month Thousands SA, 2001-2014
Source: US Bureau of Labor Statistics
Annual total separations are shown in Chart I-13. Separations are much lower in 2011-2014 than before the global recession but without recovery in hiring.
Chart I-13, US, Total Separations, Annual, Thousands, 2001-2013
Source: US Bureau of Labor Statistics
Table I-5 provides total nonfarm total separations from 2001 to 2013. Separations fell from 61.1 million in 2006 to 47.8 million in 2010 or by 13.3 million and 48.2 million in 2011 or by 12.9 million. Total separations increased from 48.2 million in 2011 to 51.8 million in 2013 or by 3.6 million.
Table I-5, US, Total Nonfarm Total Separations, Thousands, 2001-2013
Year | Annual |
2001 | 64472 |
2002 | 59003 |
2003 | 56970 |
2004 | 58238 |
2005 | 60494 |
2006 | 61117 |
2007 | 60838 |
2008 | 58227 |
2009 | 51127 |
2010 | 47750 |
2011 | 48220 |
2012 | 50070 |
2013 | 51837 |
Source: US Bureau of Labor Statistics
Monthly data of layoffs and discharges reach a peak in early 2009, as shown in Chart I-14. Layoffs and discharges dropped sharply with the recovery of the economy in 2010 and 2011 once employers reduced their job count to what was required for cost reductions and loss of business. Weak rates of growth of GDP (http://cmpassocregulationblog.blogspot.com/2014/06/financial-indecision-mediocre-cyclical.html) frustrated employment recovery. Long-term economic performance in the United States consisted of trend growth of GDP at 3 percent per year and of per capita GDP at 2 percent per year as measured for 1870 to 2010 by Robert E Lucas (2011May). The economy returned to trend growth after adverse events such as wars and recessions. The key characteristic of adversities such as recessions was much higher rates of growth in expansion periods that permitted the economy to recover output, income and employment losses that occurred during the contractions. Over the business cycle, the economy compensated the losses of contractions with higher growth in expansions to maintain trend growth of GDP of 3 percent and of GDP per capita of 2 percent.
Chart I-14, US, Total Nonfarm Layoffs and Discharges, Monthly Thousands SA, 2001-2014
Source: US Bureau of Labor Statistics
Layoffs and discharges in Chart I-15 rose sharply to a peak in 2009. There was pronounced drop into 2010 and 2011 with mild increase into 2012 and renewed decline into 2013.
Chart I-15, US, Total Nonfarm Layoffs and Discharges, Annual, 2001-2012
Source: US Bureau of Labor Statistics
Table I-6 provides annual nonfarm layoffs and discharges from 2001 to 2013. Layoffs and discharges peaked at 26.4 million in 2009 and then fell to 20.8 million in 2011, by 5.6 million, or 21.2 percent. Total nonfarm layoffs and discharges increased mildly to 20.9 million in 2012, falling to 19.9 million in 2013.
Table I-6, US, Total Nonfarm Layoffs and Discharges, Thousands, 2001-2013
Year | Annual |
2001 | 24138 |
2002 | 22706 |
2003 | 23490 |
2004 | 22668 |
2005 | 22243 |
2006 | 20896 |
2007 | 21958 |
2008 | 24028 |
2009 | 26444 |
2010 | 21829 |
2011 | 20805 |
2012 | 20892 |
2013 | 19964 |
Source: US Bureau of Labor Statistics
IA2 Labor Underutilization. The Bureau of Labor Statistics also provides alternative measures of labor underutilization shown in Table I-7. The most comprehensive measure is U6 that consists of total unemployed plus total employed part time for economic reasons plus all marginally attached workers as percent of the labor force. U6 not seasonally adjusted has risen from 8.2 percent in 2006 to 12.4 percent in Jun 2014.
Table I-7, US, Alternative Measures of Labor Underutilization NSA %
U1 | U2 | U3 | U4 | U5 | U6 | |
2014 | ||||||
Jun | 2.8 | 3.0 | 6.3 | 6.7 | 7.5 | 12.4 |
May | 3.1 | 3.0 | 6.1 | 6.5 | 7.3 | 11.7 |
Apr | 3.3 | 3.2 | 5.9 | 6.3 | 7.2 | 11.8 |
Mar | 3.7 | 3.7 | 6.8 | 7.2 | 8.1 | 12.8 |
Feb | 3.6 | 3.9 | 7.0 | 7.5 | 8.4 | 13.1 |
Jan | 3.5 | 4.0 | 7.0 | 7.5 | 8.6 | 13.5 |
2013 | ||||||
Dec | 3.5 | 3.5 | 6.5 | 7.0 | 7.9 | 13.0 |
Nov | 3.7 | 3.5 | 6.6 | 7.1 | 7.9 | 12.7 |
Oct | 3.7 | 3.6 | 7.0 | 7.4 | 8.3 | 13.2 |
Sep | 3.7 | 3.5 | 7.0 | 7.5 | 8.4 | 13.1 |
Aug | 3.7 | 3.8 | 7.3 | 7.9 | 8.7 | 13.6 |
Jul | 3.7 | 3.8 | 7.7 | 8.3 | 9.1 | 14.3 |
Jun | 3.9 | 3.8 | 7.8 | 8.4 | 9.3 | 14.6 |
May | 4.1 | 3.7 | 7.3 | 7.7 | 8.5 | 13.4 |
Apr | 4.3 | 3.9 | 7.1 | 7.6 | 8.5 | 13.4 |
Mar | 4.3 | 4.3 | 7.6 | 8.1 | 9.0 | 13.9 |
Feb | 4.3 | 4.6 | 8.1 | 8.6 | 9.6 | 14.9 |
Jan | 4.3 | 4.9 | 8.5 | 9.0 | 9.9 | 15.4 |
2012 | ||||||
Dec | 4.2 | 4.3 | 7.6 | 8.3 | 9.2 | 14.4 |
Nov | 4.2 | 3.9 | 7.4 | 7.9 | 8.8 | 13.9 |
Oct | 4.3 | 3.9 | 7.5 | 8.0 | 9.0 | 13.9 |
Sep | 4.2 | 4.0 | 7.6 | 8.0 | 9.0 | 14.2 |
Aug | 4.3 | 4.4 | 8.2 | 8.7 | 9.7 | 14.6 |
Jul | 4.3 | 4.6 | 8.6 | 9.1 | 10.0 | 15.2 |
Jun | 4.5 | 4.4 | 8.4 | 8.9 | 9.9 | 15.1 |
May | 4.7 | 4.3 | 7.9 | 8.4 | 9.3 | 14.3 |
Apr | 4.8 | 4.3 | 7.7 | 8.3 | 9.1 | 14.1 |
Mar | 4.9 | 4.8 | 8.4 | 8.9 | 9.7 | 14.8 |
Feb | 4.9 | 5.1 | 8.7 | 9.3 | 10.2 | 15.6 |
Jan | 4.9 | 5.4 | 8.8 | 9.4 | 10.5 | 16.2 |
2011 | ||||||
Dec | 4.8 | 5.0 | 8.3 | 8.8 | 9.8 | 15.2 |
Nov | 4.9 | 4.7 | 8.2 | 8.9 | 9.7 | 15.0 |
Oct | 5.0 | 4.8 | 8.5 | 9.1 | 10.0 | 15.3 |
Sep | 5.2 | 5.0 | 8.8 | 9.4 | 10.2 | 15.7 |
Aug | 5.2 | 5.1 | 9.1 | 9.6 | 10.6 | 16.1 |
Jul | 5.2 | 5.2 | 9.3 | 10.0 | 10.9 | 16.3 |
Jun | 5.1 | 5.1 | 9.3 | 9.9 | 10.9 | 16.4 |
May | 5.5 | 5.1 | 8.7 | 9.2 | 10.0 | 15.4 |
Apr | 5.5 | 5.2 | 8.7 | 9.2 | 10.1 | 15.5 |
Mar | 5.7 | 5.8 | 9.2 | 9.7 | 10.6 | 16.2 |
Feb | 5.6 | 6.0 | 9.5 | 10.1 | 11.1 | 16.7 |
Jan | 5.6 | 6.2 | 9.8 | 10.4 | 11.4 | 17.3 |
Dec 2010 | 5.4 | 5.9 | 9.1 | 9.9 | 10.7 | 16.6 |
Annual | ||||||
2013 | 3.9 | 3.9 | 7.4 | 7.9 | 8.8 | 13.8 |
2012 | 4.5 | 4.4 | 8.1 | 8.6 | 9.5 | 14.7 |
2011 | 5.3 | 5.3 | 8.9 | 9.5 | 10.4 | 15.9 |
2010 | 5.7 | 6.0 | 9.6 | 10.3 | 11.1 | 16.7 |
2009 | 4.7 | 5.9 | 9.3 | 9.7 | 10.5 | 16.2 |
2008 | 2.1 | 3.1 | 5.8 | 6.1 | 6.8 | 10.5 |
2007 | 1.5 | 2.3 | 4.6 | 4.9 | 5.5 | 8.3 |
2006 | 1.5 | 2.2 | 4.6 | 4.9 | 5.5 | 8.2 |
2005 | 1.8 | 2.5 | 5.1 | 5.4 | 6.1 | 8.9 |
2004 | 2.1 | 2.8 | 5.5 | 5.8 | 6.5 | 9.6 |
2003 | 2.3 | 3.3 | 6.0 | 6.3 | 7.0 | 10.1 |
2002 | 2.0 | 3.2 | 5.8 | 6.0 | 6.7 | 9.6 |
2001 | 1.2 | 2.4 | 4.7 | 4.9 | 5.6 | 8.1 |
2000 | 0.9 | 1.8 | 4.0 | 4.2 | 4.8 | 7.0 |
Note: LF: labor force; U1, persons unemployed 15 weeks % LF; U2, job losers and persons who completed temporary jobs %LF; U3, total unemployed % LF; U4, total unemployed plus discouraged workers, plus all other marginally attached workers; % LF plus discouraged workers; U5, total unemployed, plus discouraged workers, plus all other marginally attached workers % LF plus all marginally attached workers; U6, total unemployed, plus all marginally attached workers, plus total employed part time for economic reasons % LF plus all marginally attached workers
Source: US Bureau of Labor Statistics
Monthly seasonally adjusted measures of labor underutilization are provided in Table I-8. U6 climbed from 16.1 percent in Aug 2011 to 16.3 percent in Sep 2011 and then fell to 14.5 percent in Mar 2012, reaching 12.1 percent in Jun 2014. Unemployment is an incomplete measure of the stress in US job markets. A different calculation in this blog is provided by using the participation rate in the labor force before the global recession. This calculation shows 26.8 million in job stress of unemployment/underemployment in Jun 2013, not seasonally adjusted, corresponding to 16.3 percent of the labor force (Table I-4 http://cmpassocregulationblog.blogspot.com/2014/07/financial-valuations-twenty-seven.html).
Table I-8, US, Alternative Measures of Labor Underutilization SA %
U1 | U2 | U3 | U4 | U5 | U6 | |
Jun 2014 | 2.9 | 3.1 | 6.1 | 6.5 | 7.3 | 12.1 |
May | 3.1 | 3.2 | 6.3 | 6.7 | 7.6 | 12.2 |
Apr | 3.2 | 3.4 | 6.3 | 6.7 | 7.6 | 12.3 |
Mar | 3.5 | 3.5 | 6.7 | 7.1 | 8.0 | 12.7 |
Feb | 3.5 | 3.5 | 6.7 | 7.2 | 8.1 | 12.6 |
Jan | 3.4 | 3.5 | 6.6 | 7.1 | 8.1 | 12.7 |
Dec 2013 | 3.6 | 3.5 | 6.7 | 7.2 | 8.1 | 13.1 |
Nov | 3.7 | 3.7 | 7.0 | 7.4 | 8.2 | 13.1 |
Oct | 3.8 | 4.0 | 7.2 | 7.7 | 8.6 | 13.7 |
Sep | 3.8 | 3.7 | 7.2 | 7.7 | 8.6 | 13.6 |
Aug | 3.8 | 3.8 | 7.2 | 7.8 | 8.6 | 13.6 |
Jul | 3.9 | 3.8 | 7.3 | 7.9 | 8.7 | 13.9 |
Jun | 4.0 | 3.9 | 7.5 | 8.1 | 9.0 | 14.2 |
May | 4.0 | 3.9 | 7.5 | 8.0 | 8.8 | 13.8 |
Apr | 4.1 | 4.1 | 7.5 | 8.0 | 8.9 | 13.9 |
Mar | 4.1 | 4.1 | 7.5 | 8.0 | 8.9 | 13.8 |
Feb | 4.2 | 4.2 | 7.7 | 8.3 | 9.3 | 14.3 |
Jan | 4.2 | 4.3 | 7.9 | 8.4 | 9.3 | 14.4 |
Dec 2012 | 4.3 | 4.2 | 7.9 | 8.5 | 9.4 | 14.4 |
Nov | 4.2 | 4.1 | 7.8 | 8.3 | 9.2 | 14.4 |
Oct | 4.4 | 4.2 | 7.8 | 8.3 | 9.2 | 14.4 |
Sep | 4.3 | 4.2 | 7.8 | 8.3 | 9.3 | 14.7 |
Aug | 4.4 | 4.5 | 8.1 | 8.6 | 9.6 | 14.7 |
Jul | 4.5 | 4.6 | 8.2 | 8.7 | 9.7 | 14.9 |
Jun | 4.6 | 4.6 | 8.2 | 8.7 | 9.6 | 14.8 |
May | 4.6 | 4.5 | 8.2 | 8.7 | 9.6 | 14.8 |
Apr | 4.6 | 4.4 | 8.2 | 8.7 | 9.5 | 14.6 |
Mar | 4.7 | 4.6 | 8.2 | 8.7 | 9.6 | 14.5 |
Feb | 4.8 | 4.6 | 8.3 | 8.9 | 9.8 | 15.0 |
Jan | 4.8 | 4.7 | 8.2 | 8.8 | 9.8 | 15.1 |
Dec 2011 | 4.9 | 4.9 | 8.5 | 9.1 | 10.0 | 15.2 |
Nov | 5.0 | 5.0 | 8.6 | 9.3 | 10.2 | 15.6 |
Oct | 5.1 | 5.1 | 8.8 | 9.4 | 10.3 | 15.9 |
Sep | 5.4 | 5.2 | 9.0 | 9.6 | 10.5 | 16.3 |
Aug | 5.3 | 5.2 | 9.0 | 9.6 | 10.5 | 16.1 |
Jul | 5.3 | 5.3 | 9.0 | 9.7 | 10.6 | 16.0 |
Jun | 5.3 | 5.3 | 9.1 | 9.7 | 10.7 | 16.1 |
May | 5.3 | 5.4 | 9.0 | 9.5 | 10.3 | 15.8 |
Apr | 5.2 | 5.4 | 9.1 | 9.7 | 10.5 | 16.1 |
Mar | 5.3 | 5.4 | 9.0 | 9.5 | 10.4 | 15.9 |
Feb | 5.4 | 5.5 | 9.0 | 9.6 | 10.6 | 16.0 |
Jan | 5.5 | 5.5 | 9.1 | 9.7 | 10.7 | 16.1 |
Note: LF: labor force; U1, persons unemployed 15 weeks % LF; U2, job losers and persons who completed temporary jobs %LF; U3, total unemployed % LF; U4, total unemployed plus discouraged workers, plus all other marginally attached workers; % LF plus discouraged workers; U5, total unemployed, plus discouraged workers, plus all other marginally attached workers % LF plus all marginally attached workers; U6, total unemployed, plus all marginally attached workers, plus total employed part time for economic reasons % LF plus all marginally attached workers
Source: US Bureau of Labor Statistics
Chart I-16 provides U6 on a monthly basis from 2001 to 2014. There was a steep climb from 2007 into 2009 and then this measure of unemployment and underemployment stabilized at that high level but declined into 2012. The low of U6 SA was 8.0 percent in Mar 2007 and the peak was 17.1 percent in Apr 2010. The low NSA was 7.6 percent in Oct 2006 and the peak was 18.0 percent in Jan 2010.
Chart I-16, US, U6, total unemployed, plus all marginally attached workers, plus total employed Part-Time for Economic Reasons, Month, SA, 2001-2014
Source: US Bureau of Labor Statistics
Chart I-17 provides the number employed part-time for economic reasons or who cannot find full-time employment. There are sharp declines at the end of 2009, 2010 and 2011 but an increase in 2012 followed by stability in 2013-2014.
Chart I-17, US, Working Part-time for Economic Reasons
Thousands, Month SA 2001-2014
Sources: US Bureau of Labor Statistics
ICA3 Ten Million Fewer Full-time Jobs. There is strong seasonality in US labor markets around the end of the year.
- Seasonally adjusted part-time for economic reasons. The number employed part-time for economic reasons because they could not find full-time employment fell from 9.068 million in Sep 2011 to 7.780 million in Mar 2012, seasonally adjusted, or decline of 1.288 million in six months, as shown in Table I-9. The number employed part-time for economic reasons rebounded to 8.572 million in Sep 2012 for increase of 527,000 in one month from Aug to Sep 2012. The number employed part-time for economic reasons declined to 8.231 million in Oct 2012 or by 341,000 again in one month, further declining to 8.164 million in Nov 2012 for another major one-month decline of 67,000 and 7.929 million in Dec 2012 or fewer 235,000 in just one month. The number employed part-time for economic reasons increased to 7.983 million in Jan 2013 or 54,000 more than in Dec 2012 and to 7,991 million in Feb 2013, declining to 7.917 million in May 2013 but increasing to 8.194 million in Jun 2013. The number employed part-time for economic reasons fell to 7.898 million in Aug 2013 for decline of 282,000 in one month from 8.180 million in Jul 2013. The number employed part-time for economic reasons increased 16,000 from 7.898 million in Aug 2013 to 7.914 million in Sep 2013. The number part-time for economic reasons rose to 8.016 million in Oct 2013, falling by 293,000 to 7.723 million in Nov 2013. The number part-time for economic reasons increased to 7.771 million in Dec 2013, decreasing to 7.257 million in Jan 2014. The number employed part-time for economic reasons fell from 7.257 million in Jan 2014 to 7.186 million in Feb 2014. The number employed part-time for economic reasons increased to 7.411 million in Mar 2014 and 7.465 million in Apr 2014. The number employed part-time for economic reasons fell to 7.269 million in May 2014, increasing to 7.544 million in Jun 2014. There is an increase of 186,000 in part-time for economic reasons from Aug 2012 to Oct 2012 and of 119,000 from Aug 2012 to Nov 2012.
- Seasonally adjusted full-time. The number employed full-time increased from 112.906 million in Oct 2011 to 115.114 million in Mar 2012 or 2.208 million but then fell to 114.279 million in May 2012 or 0.835 million fewer full-time employed than in Mar 2012. The number employed full-time increased from 114.626 million in Aug 2012 to 115.531 million in Oct 2012 or increase of 0.905 million full-time jobs in two months and further to 115.821 million in Jan 2013 or increase of 1.195 million more full-time jobs in five months from Aug 2012 to Jan 2013. The number of full time jobs decreased slightly to 115.785 million in Feb 2013, increasing to 116.288 million in May 2013 and 116.087 million in Jun 2013. Then number of full-time jobs increased to 116.156 million in Jul 2013, 116.301 million in Aug 2013 and 116.883 million in Sep 2013. The number of full-time jobs fell to 116.306 million in Oct 2013 and increased to 116.951 in Nov 2013. The level of full-time jobs fell to 117.278 million in Dec 2013, increasing to 117.656 million in Jan 2014 and 117.819 million in Feb 2014. The level of employment full-time increased to 118.003 million in Mar 2014 and 118.415 million in Apr 2014. The level of full-time employment reached 118.727 million in May 2014, decreasing to 118.204 million in Jun 2014. Adjustments of benchmark and seasonality-factors at the turn of every year could affect comparability of labor market indicators (http://cmpassocregulationblog.blogspot.com/2014/02/financial-instability-rules.html http://cmpassocregulationblog.blogspot.com/2013/02/thirty-one-million-unemployed-or.html).
- Not seasonally adjusted part-time for economic reasons. The number of employed part-time for economic reasons actually increased without seasonal adjustment from 8.271 million in Nov 2011 to 8.428 million in Dec 2011 or by 157,000 and then to 8.918 million in Jan 2012 or by an additional 490,000 for cumulative increase from Nov 2011 to Jan 2012 of 647,000. The level of employed part-time for economic reasons then fell from 8.918 million in Jan 2012 to 7.867 million in Mar 2012 or by 1.051 million and to 7.694 million in Apr 2012 or 1.224 million fewer relative to Jan 2012. In Aug 2012, the number employed part-time for economic reasons reached 7.842 million NSA or 148,000 more than in Apr 2012. The number employed part-time for economic reasons increased from 7.842 million in Aug 2012 to 8.110 million in Sep 2012 or by 3.4 percent. The number part-time for economic reasons fell from 8.110 million in Sep 2012 to 7.870 million in Oct 2012 or by 240.000 in one month. The number employed part-time for economic reasons NSA increased to 8.628 million in Jan 2013 or 758,000 more than in Oct 2012. The number employed part-time for economic reasons fell to 8.298 million in Feb 2013, which is lower by 330,000 relative to 8.628 million in Jan 2013 but higher by 428,000 relative to 7.870 million in Oct 2012. The number employed part time for economic reasons fell to 7.734 million in Mar 2013 or 564,000 fewer than in Feb 2013 and fell to 7.709 million in Apr 2013. The number employed part-time for economic reasons reached 7.618 million in May 2013. The number employed part-time for economic reasons jumped from 7.618 million in May 2013 to 8.440 million in Jun 2013 or 822,000 in one month. The number employed part-time for economic reasons fell to 8.324 million in Jul 2013 and 7.690 million in Aug 2013. The number employed part-time for economic reasons NSA fell to 7.522 million in Sep 2013, increasing to 7.700 million in Oct 2013. The number employed part-time for economic reasons fell to 7.563 million in Nov 2013 and increased to 7.990 million in Dec 2013. The number employed part-time for economic reasons fell to 7.771 million in Jan 2014 and 7.397 million in Feb 2014. The level of part-time for economic reasons increased to 7.455 million in Mar 2014 and fell to 7.243 million in Apr 2014. The number of part-time for economic reasons fell to 6.960 million in May 2014, increasing to 7.805 million in Jun 2014.
- Not seasonally adjusted full-time. The number employed full time without seasonal adjustment fell from 113.138 million in Nov 2011 to 113.050 million in Dec 2011 or by 88,000 and fell further to 111.879 in Jan 2012 for cumulative decrease of 1.259 million. The number employed full-time not seasonally adjusted fell from 113.138 million in Nov 2011 to 112.587 million in Feb 2012 or by 551.000 but increased to 116.214 million in Aug 2012 or 3.076 million more full-time jobs than in Nov 2011. The number employed full-time not seasonally adjusted decreased from 116.214 million in Aug 2012 to 115.678 million in Sep 2012 for loss of 536,000 full-time jobs and rose to 116.045 million in Oct 2012 or by 367,000 full-time jobs in one month relative to Sep 2012. The number employed full-time NSA fell from 116.045 million in Oct 2012 to 115.515 million in Nov 2012 or decline of 530.000 in one month. The number employed full-time fell from 115.515 in Nov 2012 to 115.079 million in Dec 2012 or decline by 436,000 in one month. The number employed full time fell from 115.079 million in Dec 2012 to 113.868 million in Jan 2013 or decline of 1.211 million in one month. The number of full time jobs increased to 114.191 in Feb 2012 or by 323,000 in one month and increased to 114.796 million in Mar 2013 for cumulative increase from Jan by 928,000 full-time jobs but decrease of 283,000 from Dec 2012. The number employed full time reached 117.400 million in Jun 2013 and increased to 117.688 in Jul 2013 or by 288,000. The number employed full-time reached 117.868 million in Aug 2013 for increase of 180,000 in one month relative to Jul 2013. The number employed full-time fell to 117.308 million in Sep 2013 or by 560,000. The number employed full-time fell to 116.798 million in Oct 2013 or decline of 510.000 in one month. The number employed full-time rose to 116.875 million in Nov 2013, falling to 116.661 million in Dec 2013. The number employed full-time fell to 115.744 million in Jan 2014 but increased to 116.323 million in Feb 2014. The level of full-time jobs increased to 116.985 in Mar 2014 and 118.073 million in Apr 2014. The number of full-time jobs increased to 119.179 million in May 2014, increasing to 119.472 million in Jun 2014. Comparisons over long periods require use of NSA data. The number with full-time jobs fell from a high of 123.219 million in Jul 2007 to 108.777 million in Jan 2010 or by 14.442 million. The number with full-time jobs in Jun 2014 is 119.472 million, which is lower by 3.747 million relative to the peak of 123.219 million in Jul 2007.
- Loss of full-time jobs. The magnitude of the stress in US labor markets is magnified by the increase in the civilian noninstitutional population of the United States from 231.958 million in Jul 2007 to 247.814 million in Jun 2014 or by 15.856 million (http://www.bls.gov/data/) while in the same period the number of full-time jobs fell 3.747 million. The ratio of full-time jobs of 123.219 million Jul 2007 to civilian noninstitutional population of 231.958 million was 53.1 percent. If that ratio had remained the same, there would be 131.589 million full-time jobs with population of 247.814 million in Jun 2014 (0.531 x 247.814) or 12.117 million fewer full-time jobs relative to actual 119.472 million. There appear to be around 10 million fewer full-time jobs in the US than before the global recession while population increased around 15 million. Mediocre GDP growth is the main culprit of the fractured US labor market. Long-term economic performance in the United States consisted of trend growth of GDP at 3 percent per year and of per capita GDP at 2 percent per year as measured for 1870 to 2010 by Robert E Lucas (2011May). The economy returned to trend growth after adverse events such as wars and recessions. The key characteristic of adversities such as recessions was much higher rates of growth in expansion periods that permitted the economy to recover output, income and employment losses that occurred during the contractions. Over the business cycle, the economy compensated the losses of contractions with higher growth in expansions to maintain trend growth of GDP of 3 percent and of GDP per capita of 2 percent. US economic growth has been at only 2.1 percent on average in the cyclical expansion in the 19 quarters from IIIQ2009 to IQ2014. Boskin (2010Sep) measures that the US economy grew at 6.2 percent in the first four quarters and 4.5 percent in the first 12 quarters after the trough in the second quarter of 1975; and at 7.7 percent in the first four quarters and 5.8 percent in the first 12 quarters after the trough in the first quarter of 1983 (Professor Michael J. Boskin, Summer of Discontent, Wall Street Journal, Sep 2, 2010 http://professional.wsj.com/article/SB10001424052748703882304575465462926649950.html). There are new calculations using the revision of US GDP and personal income data since 1929 by the Bureau of Economic Analysis (BEA) (http://bea.gov/iTable/index_nipa.cfm) and the third estimate of GDP for IQ2014 (http://www.bea.gov/newsreleases/national/gdp/2014/pdf/gdp1q14_3rd.pdf). The average of 7.7 percent in the first four quarters of major cyclical expansions is in contrast with the rate of growth in the first four quarters of the expansion from IIIQ2009 to IIQ2010 of only 2.7 percent obtained by dividing GDP of $14,738.0 billion in IIQ2010 by GDP of $14,356.9 billion in IIQ2009 {[$14,738.0/$14,356.9 -1]100 = 2.7%], or accumulating the quarter on quarter growth rates (http://cmpassocregulationblog.blogspot.com/2014/06/financial-indecision-mediocre-cyclical.html and earlier http://cmpassocregulationblog.blogspot.com/2014/05/financial-volatility-mediocre-cyclical.html). The expansion from IQ1983 to IVQ1985 was at the average annual growth rate of 5.9 percent, 5.4 percent from IQ1983 to IIIQ1986, 5.2 percent from IQ1983 to IVQ1986, 5.0 percent from IQ1983 to IQ1987, 5.0 percent from IQ1983 to IIQ1987, 4.9 percent from IQ1983 to IIIQ1987 and at 7.8 percent from IQ1983 to IVQ1983 (http://cmpassocregulationblog.blogspot.com/2014/06/financial-indecision-mediocre-cyclical.html and earlier http://cmpassocregulationblog.blogspot.com/2014/06/financial-instability-mediocre-cyclical.html). The US maintained growth at 3.0 percent on average over entire cycles with expansions at higher rates compensating for contractions. Growth at trend in the entire cycle from IVQ2007 to IQ2014 would have accumulated to 21.2 percent. GDP in IQ2014 would be $18,172.7 billion (in constant dollars of 2009) if the US had grown at trend, which is higher by $2,348.5 billion than actual $15,824.2 billion. There are about two trillion dollars of GDP less than at trend, explaining the 26.8 million unemployed or underemployed equivalent to actual unemployment of 16.3 percent of the effective labor force (http://cmpassocregulationblog.blogspot.com/2014/07/financial-valuations-twenty-seven.html and earlier http://cmpassocregulationblog.blogspot.com/2014/06/financial-risks-rules-discretionary.html). US GDP in IQ2014 is 12.9 percent lower than at trend. US GDP grew from $14,996.1 billion in IVQ2007 in constant dollars to $15,842.2 billion in IQ2014 or 5.5 percent at the average annual equivalent rate of 0.8 percent. Cochrane (2014Jul2) estimates US GDP at more than 10 percent below trend. The US missed the opportunity to grow at higher rates during the expansion and it is difficult to catch up because growth rates in the final periods of expansions tend to decline. The US missed the opportunity for recovery of output and employment always afforded in the first four quarters of expansion from recessions. Zero interest rates and quantitative easing were not required or present in successful cyclical expansions and in secular economic growth at 3.0 percent per year and 2.0 percent per capita as measured by Lucas (2011May). There is cyclical uncommonly slow growth in the US instead of allegations of secular stagnation.
Table I-9, US, Employed Part-time for Economic Reasons, Thousands, and Full-time, Millions
Part-time Thousands | Full-time Millions | |
Seasonally Adjusted | ||
Jun 2014 | 7,544 | 118.204 |
May 2014 | 7,269 | 188.727 |
Apr 2014 | 7,465 | 118.415 |
Mar 2014 | 7,411 | 118.003 |
Feb 2014 | 7,186 | 117.819 |
Jan 2014 | 7,257 | 117.656 |
Dec 2013 | 7,771 | 117.278 |
Nov 2013 | 7,723 | 116.951 |
Oct 2013 | 8,016 | 116.306 |
Sep 2013 | 7,914 | 116.883 |
Aug 2013 | 7,898 | 116.301 |
Jul 2013 | 8,180 | 116.156 |
Jun 2013 | 8,194 | 116.087 |
May 2013 | 7,917 | 116.288 |
Apr 2013 | 7,929 | 116.062 |
Mar 2013 | 7,663 | 115.901 |
Feb 2013 | 7,991 | 115.785 |
Jan 2013 | 7,983 | 115.821 |
Dec 2012 | 7,929 | 115.735 |
Nov 2012 | 8,164 | 115.581 |
Oct 2012 | 8,231 | 115.531 |
Sep 2012 | 8,572 | 115.229 |
Aug 2012 | 8,045 | 114.626 |
Jul 2012 | 8,163 | 114.589 |
Jun 2012 | 8,154 | 114.728 |
May 2012 | 8,138 | 114.279 |
Apr 2012 | 7,913 | 114.398 |
Mar 2012 | 7,780 | 115.114 |
Feb 2012 | 8,133 | 114.210 |
Jan 2012 | 8,228 | 113.790 |
Dec 2011 | 8,177 | 113.740 |
Nov 2011 | 8,457 | 113.158 |
Oct 2011 | 8,675 | 112.906 |
Sep 2011 | 9,068 | 112.523 |
Aug 2011 | 8,820 | 112.643 |
Jul 2011 | 8,342 | 112.209 |
Not Seasonally Adjusted | ||
Jun 2014 | 7,805 | 119.472 |
May 2014 | 6,960 | 119.179 |
Apr 2014 | 7,243 | 118.073 |
Mar 2014 | 7,455 | 116.985 |
Feb 2014 | 7,397 | 116.323 |
Jan 2014 | 7,771 | 115.744 |
Dec 2013 | 7,990 | 116.661 |
Nov 2013 | 7,563 | 116.875 |
Oct 2013 | 7,700 | 116.798 |
Sep 2013 | 7,522 | 117.308 |
Aug 2013 | 7,690 | 117.868 |
Jul 2013 | 8,324 | 117.688 |
Jun 2013 | 8,440 | 117.400 |
May 2013 | 7,618 | 116.643 |
Apr 2013 | 7,709 | 115.674 |
Mar 2013 | 7,734 | 114.796 |
Feb 2013 | 8,298 | 114.191 |
Jan 2013 | 8,628 | 113.868 |
Dec 2012 | 8,166 | 115.079 |
Nov 2012 | 7,994 | 115.515 |
Oct 2012 | 7,870 | 116.045 |
Sep 2012 | 8,110 | 115.678 |
Aug 2012 | 7,842 | 116.214 |
Jul 2012 | 8,316 | 116.131 |
Jun 2012 | 8,394 | 116.024 |
May 2012 | 7,837 | 114.634 |
Apr 2012 | 7,694 | 113.999 |
Mar 2012 | 7,867 | 113.916 |
Feb 2012 | 8,455 | 112.587 |
Jan 2012 | 8,918 | 111.879 |
Dec 2011 | 8,428 | 113.050 |
Nov 2011 | 8,271 | 113.138 |
Oct 2011 | 8,258 | 113.456 |
Sep 2011 | 8,541 | 112.980 |
Aug 2011 | 8,604 | 114.286 |
Jul 2011 | 8,514 | 113.759 |
Jun 2011 | 8,738 | 113.255 |
May 2011 | 8,270 | 112.618 |
Apr 2011 | 8,425 | 111.844 |
Mar 2011 | 8,737 | 111.186 |
Feb 2011 | 8,749 | 110.731 |
Jan 2011 | 9,187 | 110.373 |
Dec 2010 | 9,205 | 111.207 |
Nov 2010 | 8,670 | 111.348 |
Oct 2010 | 8,408 | 112.342 |
Sep 2010 | 8,628 | 112.385 |
Aug 2010 | 8,628 | 113.508 |
Jul 2010 | 8,737 | 113.974 |
Jun 2010 | 8,867 | 113.856 |
May 2010 | 8,513 | 112.809 |
Apr 2010 | 8,921 | 111.391 |
Mar 2010 | 9,343 | 109.877 |
Feb 2010 | 9,282 | 109.100 |
Jan 2010 | 9,290 | 108.777 (low) |
Dec 2009 | 9,354 (high) | 109.875 |
Nov 2009 | 8,894 | 111.274 |
Oct 2009 | 8,474 | 111.599 |
Sep 2009 | 8,255 | 111.991 |
Aug 2009 | 8,835 | 113.863 |
Jul 2009 | 9,103 | 114.184 |
Jun 2009 | 9,301 | 114.014 |
May 2009 | 8,785 | 113.083 |
Apr 2009 | 8,648 | 112.746 |
Mar 2009 | 9,305 | 112.215 |
Feb 2009 | 9,170 | 112.947 |
Jan 2009 | 8,829 | 113.815 |
Dec 2008 | 8,250 | 116.422 |
Nov 2008 | 7,135 | 118.432 |
Oct 2008 | 6,267 | 120.020 |
Sep 2008 | 5,701 | 120.213 |
Aug 2008 | 5,736 | 121.556 |
Jul 2008 | 6,054 | 122.378 |
Jun 2008 | 5,697 | 121.845 |
May 2008 | 5,096 | 120.809 |
Apr 2008 | 5,071 | 120.027 |
Mar 2008 | 5,038 | 119.875 |
Feb 2008 | 5,114 | 119.452 |
Jan 2008 | 5,340 | 119.332 |
Dec 2007 | 4,750 | 121.042 |
Nov 2007 | 4,374 | 121.846 |
Oct 2007 | 4,028 | 122.006 |
Sep 2007 | 4,137 | 121.728 |
Aug 2007 | 4,494 | 122.870 |
Jul 2007 | 4,516 | 123.219 (high) |
Jun 2007 | 4,469 | 122.150 |
May 2007 | 4,315 | 120.846 |
Apr 2007 | 4,205 | 119.609 |
Mar 2007 | 4,384 | 119.640 |
Feb 2007 | 4,417 | 119.041 |
Jan 2007 | 4,726 | 119.094 |
Dec 2006 | 4,281 | 120.371 |
Nov 2006 | 4,054 | 120.507 |
Oct 2006 | 4,010 | 121.199 |
Sep 2006 | 3,735 (low) | 120.780 |
Aug 2006 | 4,104 | 121.979 |
Jul 2006 | 4,450 | 121.951 |
Jun 2006 | 4,456 | 121.070 |
May 2006 | 3,968 | 118.925 |
Apr 2006 | 3,787 | 118.559 |
Mar 2006 | 4,097 | 117.693 |
Feb 2006 | 4,403 | 116.823 |
Jan 2006 | 4,597 | 116.395 |
Source: US Bureau of Labor Statistics
People lose their marketable job skills after prolonged unemployment and face increasing difficulty in finding another job. Chart I-18 shows the sharp rise in unemployed over 27 weeks and stabilization at an extremely high level.
Chart I-18, US, Number Unemployed for 27 Weeks or Over, Thousands SA Month 2001-2014
Sources: US Bureau of Labor Statistics
Another segment of U6 consists of people marginally attached to the labor force who continue to seek employment but less frequently on the frustration there may not be a job for them. Chart I-19 shows the sharp rise in people marginally attached to the labor force after 2007 and subsequent stabilization.
Chart I-19, US, Marginally Attached to the Labor Force, NSA Month, Thousands, 2001-2014
Sources: US Bureau of Labor Statistics
The number with full-time jobs in Jun 2014 is 119.472 million, which is lower by 3.747 million relative to the peak of 123.219 million in Jul 2007. The magnitude of the stress in US labor markets is magnified by the increase in the civilian noninstitutional population of the United States from 231.958 million in Jul 2007 to 247.814 million in Jun 2014 or by 15.856 million (http://www.bls.gov/data/) while in the same period the number of full-time jobs fell 3.747 million. The ratio of full-time jobs of 123.219 million Jul 2007 to civilian noninstitutional population of 231.958 million was 53.1 percent. If that ratio had remained the same, there would be 131.589 million full-time jobs with population of 247.814 million in Jun 2014 (0.531 x 247.814) or 12.117 million fewer full-time jobs relative to actual 119.472 million. There appear to be around 10 million fewer full-time jobs in the US than before the global recession while population increased around 15 million. Mediocre GDP growth is the main culprit of the fractured US labor market.
Chart I-20 provides unadjusted full-time jobs in the US from 2001 to 2014 with sharp drop and incomplete recovery. There is current interest in past theories of “secular stagnation.” Alvin H. Hansen (1939, 4, 7; see Hansen 1938, 1941; for an early critique see Simons 1942) argues:
“Not until the problem of full employment of our productive resources from the long-run, secular standpoint was upon us, were we compelled to give serious consideration to those factors and forces in our economy which tend to make business recoveries weak and anaemic (sic) and which tend to prolong and deepen the course of depressions. This is the essence of secular stagnation-sick recoveries which die in their infancy and depressions which feed on them-selves and leave a hard and seemingly immovable core of unemployment. Now the rate of population growth must necessarily play an important role in determining the character of the output; in other words, the com-position of the flow of final goods. Thus a rapidly growing population will demand a much larger per capita volume of new residential building construction than will a stationary population. A stationary population with its larger proportion of old people may perhaps demand more personal services; and the composition of consumer demand will have an important influence on the quantity of capital required. The demand for housing calls for large capital outlays, while the demand for personal services can be met without making large investment expenditures. It is therefore not unlikely that a shift from a rapidly growing population to a stationary or declining one may so alter the composition of the final flow of consumption goods that the ratio of capital to output as a whole will tend to decline.”
The argument that anemic population growth causes “secular stagnation” in the US (Hansen 1938, 1939, 1941) is as misplaced currently as in the late 1930s (for early dissent see Simons 1942). This is merely another case of theory without reality with dubious policy proposals.
Inferior performance of the US economy and labor markets, during cyclical slow growth not secular stagnation, is the critical current issue of analysis and policy design.
Chart I-20, US, Full-time Employed, Thousands, NSA, 2001-2014
Sources: US Bureau of Labor Statistics
Chart I-20A provides the noninstitutional civilian population of the United States from 2001 to 2014. There is clear trend of increase of the population while the number of full-time jobs collapsed after 2008 without sufficient recovery as shown in the preceding Chart I-20.
Chart I-20A, US, Noninstitutional Civilian Population, Thousands, 2001-2014
Sources: US Bureau of Labor Statistics
Chart I-20B provides number of full-time jobs in the US from 1968 to 2014. There were multiple recessions followed by expansions without contraction of full-time jobs and without recovery as during the period after 2008. The problem is specific of the current cycle and not secular.
Chart I-20B, US, Full-time Employed, Thousands, NSA, 1968-2014
Sources: US Bureau of Labor Statistics
Chart I-20C provides the noninstitutional civilian population of the United States from 1968 to 2013. Population expanded at a relatively constant rate of increase with the assurance of creation of full-time jobs that has been broken since 2008.
Chart I-20C, US, Noninstitutional Civilian Population, Thousands, 1968-2014
Sources: US Bureau of Labor Statistics
IA4 Theory and Reality of Secular Stagnation: Youth and Middle-Age Unemployment. Three tables support the argument that the proper comparison of the business cycle is between the recessions of the 1980s and the global recession after IVQ2007 and not as argued erroneously with the Great Depression of the 1930s.
Table I-5 provides percentage change of real GDP in the United States in the 1930s, 1980s and 2000s. The recession in 1981-1982 is quite similar on its own to the 2007-2009 recession. In contrast, during the Great Depression in the four years of 1930 to 1933, GDP in constant dollars fell 26.4 percent cumulatively and fell 45.3 percent in current dollars (Pelaez and Pelaez, Financial Regulation after the Global Recession (2009a), 150-2, Pelaez and Pelaez, Globalization and the State, Vol. II (2009b), 205-7 and revisions in http://bea.gov/iTable/index_nipa.cfm). Data are available for the 1930s only on a yearly basis. US GDP fell 4.7 percent in the two recessions (1) from IQ1980 to IIIQ1980 and (2) from III1981 to IVQ1981 to IVQ1982 and 4.3 percent cumulatively in the recession from IVQ2007 to IIQ2009. It is instructive to compare the first three years of the expansions in the 1980s and the current expansion. GDP grew at 4.6 percent in 1983, 7.3 percent in 1984, 4.2 percent in 1985 and 3.5 percent in 1986 while GDP grew, 2.5 percent in 2010, 1.8 percent in 2011, 2.8 percent in 2012 and 1.9 percent in 2013. Actual annual equivalent GDP growth in the four quarters of 2012, and five quarters from IQ2013 to IQ2014 is 1.7 percent and 1.5 percent in the four quarters ending in IQ2014 but only 2.2 percent in the four quarters of 2013 by discounting contribution of 1.67 percentage points of inventory accumulation to growth in IIIQ2013. GDP grew at 4.2 percent in 1985 and 3.5 percent in 1986 while the forecasts of the central tendency of participants of the Federal Open Market Committee (FOMC) are in the range of 2.1 to 2.3 percent in 2014 (http://www.federalreserve.gov/monetarypolicy/files/fomcprojtabl20140618.pdf) with less reliable forecast of 3.0 to 3.2 percent in 2015 (http://www.federalreserve.gov/monetarypolicy/files/fomcprojtabl20140618.pdf). Growth of GDP in the expansion from IIIQ2009 to IQ2014 has been at average 2.1 percent in annual equivalent.
Table I-5, US, Percentage Change of GDP in the 1930s, 1980s and 2000s, ∆%
Year | GDP ∆% | Year | GDP ∆% | Year | GDP ∆% |
1930 | -8.5 | 1980 | -0.2 | 2000 | 4.1 |
1931 | -6.4 | 1981 | 2.6 | 2001 | 1.0 |
1932 | -12.9 | 1982 | -1.9 | 2002 | 1.8 |
1933 | -1.3 | 1983 | 4.6 | 2003 | 2.8 |
1934 | 10.8 | 1984 | 7.3 | 2004 | 3.8 |
1935 | 8.9 | 1985 | 4.2 | 2005 | 3.4 |
1936 | 12.9 | 1986 | 3.5 | 2006 | 2.7 |
1937 | 5.1 | 1987 | 3.5 | 2007 | 1.8 |
1938 | -3.3 | 1988 | 4.2 | 2008 | -0.3 |
1930 | 8.0 | 1989 | 3.7 | 2009 | -2.8 |
1940 | 8.8 | 1990 | 1.9 | 2010 | 2.5 |
1941 | 17.7 | 1991 | -0.1 | 2011 | 1.8 |
1942 | 18.9 | 1992 | 3.6 | 2012 | 2.8 |
1943 | 17.0 | 1993 | 2.7 | 2013 | 1.9 |
Source: US Bureau of Economic Analysis
http://www.bea.gov/iTable/index_nipa.cfm
Characteristics of the four cyclical contractions are provided in Table I-6 with the first column showing the number of quarters of contraction; the second column the cumulative percentage contraction; and the final column the average quarterly rate of contraction. There were two contractions from IQ1980 to IIIQ1980 and from IIIQ1981 to IVQ1982 separated by three quarters of expansion. The drop of output combining the declines in these two contractions is 4.7 percent, which is almost equal to the decline of 4.3 percent in the contraction from IVQ2007 to IIQ2009. In contrast, during the Great Depression in the four years of 1930 to 1933, GDP in constant dollars fell 26.4 percent cumulatively and fell 45.3 percent in current dollars (Pelaez and Pelaez, Financial Regulation after the Global Recession (2009a), 150-2, Pelaez and Pelaez, Globalization and the State, Vol. II (2009b), 205-7 and revisions in http://bea.gov/iTable/index_nipa.cfm). The comparison of the global recession after 2007 with the Great Depression is entirely misleading.
Table I-6, US, Number of Quarters, GDP Cumulative Percentage Contraction and Average Percentage Annual Equivalent Rate in Cyclical Contractions
Number of Quarters | Cumulative Percentage Contraction | Average Percentage Rate | |
IIQ1953 to IIQ1954 | 3 | -2.4 | -0.8 |
IIIQ1957 to IIQ1958 | 3 | -3.0 | -1.0 |
IVQ1973 to IQ1975 | 5 | -3.1 | -0.6 |
IQ1980 to IIIQ1980 | 2 | -2.2 | -1.1 |
IIIQ1981 to IVQ1982 | 4 | -2.5 | -0.64 |
IVQ2007 to IIQ2009 | 6 | -4.3 | -0.72 |
Sources: Source: Bureau of Economic Analysis http://www.bea.gov/iTable/index_nipa.cfm
Table I-7 shows the mediocre average annual equivalent growth rate of 2.2 percent of the US economy in the nineteen quarters of the current cyclical expansion from IIIQ2009 to IQ2014. In sharp contrast, the average growth rate of GDP was:
- 5.7 percent in the first thirteen quarters of expansion from IQ1983 to IQ1986
- 5.4 percent in the first fifteen quarters of expansion from IQ1983 to IIIQ1986
- 5.2 percent in the first sixteen quarters of expansion from IQ1983 to IVQ1986
- 5.0 percent in the first seventeen quarters of expansion from IQ1983 to IQ1987
- 5.0 percent in the first eighteen quarters of expansion from IQ1983 to IIQ1987
- 4.9 percent in the first nineteen quarters of expansion from IQ1983 to IIIQ1987.
The line “average first four quarters in four expansions” provides the average growth rate of 7.7 percent with 7.8 percent from IIIQ1954 to IIQ1955, 9.2 percent from IIIQ1958 to IIQ1959, 6.1 percent from IIIQ1975 to IIQ1976 and 7.8 percent from IQ1983 to IVQ1983. The United States missed this opportunity of high growth in the initial phase of recovery. BEA data show the US economy in standstill with annual growth of 2.4 percent in 2010 decelerating to 1.8 percent annual growth in 2011, 2.8 percent in 2012 and 1.9 percent in 2013 (http://www.bea.gov/iTable/index_nipa.cfm) The expansion from IQ1983 to IQ1986 was at the average annual growth rate of 5.7 percent, 5.2 percent from IQ1983 to IVQ1986, 4.9 percent from IQ1983 to IIIQ1987 and at 7.8 percent from IQ1983 to IVQ1983. GDP growth in the four quarters of 2012, the four quarters of 2013 and the first quarter of 2014 accumulated to 3.8 percent. This growth is equivalent to 1.7 percent per year, obtained by dividing GDP in IQ2014 of $15,924.2 billion by GDP in IVQ2011 of $15,242.1 billion and compounding by 4/9: {[($15,824.2/$15,242.1)4/9 -1]100 = 1.7 percent. The rate of growth of GDP in the third estimate of IIIQ2013 is 4.1 percent in seasonally adjusted annual rate (SAAR). Inventory accumulation contributed 1.67 percentage points to this rate of growth. The actual rate without this impulse of unsold inventories would have been 2.43 percent, or 0.6 percent in IIIQ2013, such that annual equivalent growth in 2013 is closer to 2.2 percent {[(1.003)(1.006)(1.006)(1.007)4/4-1]100 = 2.2%}, compounding the quarterly rates and converting into annual equivalent. Inventory divestment deducted 1.70 percentage points from GDP growth in IQ2014. Without this deduction of inventory divestment, GDP growth would have been minus 1.23 percent in IQ2014, such that the actual growth rates in the four quarters ending in IQ2014 is closer to 2.0 percent {[(1.006)(1.01)(1.007)(0.9969)]4/4 -1]100 = 2.0%}.
Table I-7, US, Number of Quarters, Cumulative Growth and Average Annual Equivalent Growth Rate in Cyclical Expansions
Number | Cumulative Growth ∆% | Average Annual Equivalent Growth Rate | |
IIIQ 1954 to IQ1957 | 11 | 12.8 | 4.5 |
First Four Quarters IIIQ1954 to IIQ1955 | 4 | 7.8 | |
IIQ1958 to IIQ1959 | 5 | 10.0 | 7.9 |
First Four Quarters IIIQ1958 to IIQ1959 | 4 | 9.2 | |
IIQ1975 to IVQ1976 | 8 | 8.3 | 4.1 |
First Four Quarters IIIQ1975 to IIQ1976 | 4 | 6.1 | |
IQ1983-IQ1986 IQ1983-IIIQ1986 IQ1983-IVQ1986 IQ1983-IQ1987 IQ1983-IIQ1987 IQ1983 to IIIQ1987 | 13 15 16 17 18 19 | 19.9 21.6 22.3 23.1 24.5 25.6 | 5.7 5.4 5.2 5.0 5.0 4.9 |
First Four Quarters IQ1983 to IVQ1983 | 4 | 7.8 | |
Average First Four Quarters in Four Expansions* | 7.7 | ||
IIIQ2009 to IQ2014 | 19 | 10.2 | 2.1 |
First Four Quarters IIIQ2009 to IIQ2010 | 2.7 |
*First Four Quarters: 7.8% IIIQ1954-IIQ1955; 9.2% IIIQ1958-IIQ1959; 6.1% IIIQ1975-IIQ1976; 7.8% IQ1983-IVQ1983
Source: Bureau of Economic Analysis http://www.bea.gov/iTable/index_nipa.cfm
Table EMP provides the comparison between the labor market in the current whole cycle from 2007 to 2013 and the whole cycle from 1979 to 1986. In the entire cycle from 2007 to 2013, the number employed fell 2.118 million, full-time employed fell 4.777 million, part-time for economic reasons increased 3.534 and population increased 13.812 million. The number employed fell 1.5 percent, full-time employed fell 3.9 percent, part-time for economic reasons increased 80.3 percent and population increased 6.0 percent. There is sharp contrast with the contractions of the 1980s and with most economic history of the United States. In the whole cycle from 1979 to 1986, the number employed increased 10.773 million, full-time employed increased 7.875 million, part-time for economic reasons 2.011 million and population 15.724 million. In the entire cycle from 1979 to 1986, the number employed increased 10.9 percent, full-time employed 9.5 percent, part-time for economic reasons 56.2 percent and population 9.5 million. The difference between the 1980s and the current cycle after 2007 is in the high rate of growth after the contraction that maintained trend growth around 3.0 percent for the entire cycle and per capital growth at 2.0 percent. The evident fact is that current weakness in labor markets originates in cyclical slow growth and not in imaginary secular stagnation.
Table EMP, US, Annual Level of Employed, Full-Time Employed, Employed Part-Time for Economic Reasons and Noninstitutional Civilian Population, Millions
Employed | Full-Time Employed | Part Time Economic Reasons | Noninstitutional Civilian Population | |
2000s | ||||
2000 | 136.891 | 113.846 | 3.227 | 212.577 |
2001 | 136.933 | 113.573 | 3.715 | 215.092 |
2002 | 136.485 | 112.700 | 4.213 | 217.570 |
2003 | 137.736 | 113.324 | 4.701 | 221.168 |
2004 | 139.252 | 114.518 | 4.567 | 223.357 |
2005 | 141.730 | 117.016 | 4.350 | 226.082 |
2006 | 144.427 | 119.688 | 4.162 | 228.815 |
2007 | 146.047 | 121.091 | 4.401 | 231.867 |
2008 | 145.362 | 120.030 | 5.875 | 233.788 |
2009 | 139.877 | 112.634 | 8.913 | 235.801 |
2010 | 139.064 | 111.714 | 8.874 | 237.830 |
2011 | 139.869 | 112.556 | 8.560 | 239.618 |
2012 | 142.469 | 114.809 | 8.122 | 243.284 |
2013 | 143.929 | 116.314 | 7.935 | 245.679 |
∆2007-2013 | -2.118 | -4.777 | 3.534 | 13.812 |
∆% 2007-2013 | -1.5 | -3.9 | 80.3 | 6.0 |
1980s | ||||
1979 | 98.824 | 82.654 | 3.577 | 164.863 |
1980 | 99.303 | 82.562 | 4.321 | 167.745 |
1981 | 100.397 | 83.243 | 4.768 | 170.130 |
1982 | 99.526 | 81.421 | 6.170 | 172.271 |
1983 | 100.834 | 82.322 | 6.266 | 174.215 |
1984 | 105.005 | 86.544 | 5.744 | 176.383 |
1985 | 107.150 | 88.534 | 5.590 | 178.206 |
1986 | 109.597 | 90.529 | 5.588 | 180.587 |
1987 | 112.440 | 92.957 | 5.401 | 182.753 |
1988 | 114.968 | 95.214 | 5.206 | 184.613 |
1989 | 117.342 | 97.369 | 4.894 | 186.393 |
∆1979-1986 | 10.773 | 7.875 | 2.011 | 15.724 |
∆% 1979-86 | 10.9 | 9.5 | 56.2 | 9.5 |
Source: Bureau of Labor Statistics
There is current interest in past theories of “secular stagnation.” Alvin H. Hansen (1939, 4, 7; see Hansen 1938, 1941; for an early critique see Simons 1942) argues:
“Not until the problem of full employment of our productive resources from the long-run, secular standpoint was upon us, were we compelled to give serious consideration to those factors and forces in our economy which tend to make business recoveries weak and anaemic (sic) and which tend to prolong and deepen the course of depressions. This is the essence of secular stagnation-sick recoveries which die in their infancy and depressions which feed on them-selves and leave a hard and seemingly immovable core of unemployment. Now the rate of population growth must necessarily play an important role in determining the character of the output; in other words, the com-position of the flow of final goods. Thus a rapidly growing population will demand a much larger per capita volume of new residential building construction than will a stationary population. A stationary population with its larger proportion of old people may perhaps demand more personal services; and the composition of consumer demand will have an important influence on the quantity of capital required. The demand for housing calls for large capital outlays, while the demand for personal services can be met without making large investment expenditures. It is therefore not unlikely that a shift from a rapidly growing population to a stationary or declining one may so alter the composition of the final flow of consumption goods that the ratio of capital to output as a whole will tend to decline.”
The argument that anemic population growth causes “secular stagnation” in the US (Hansen 1938, 1939, 1941) is as misplaced currently as in the late 1930s (for early dissent see Simons 1942). Youth workers would obtain employment at a premium in an economy with declining population. In fact, there is currently population growth in the ages of 16 to 24 years but not enough job creation and discouragement of job searches for all ages. This is merely another case of theory without reality with dubious policy proposals. Inferior performance of the US economy and labor markets is the critical current issue of analysis and policy design.
In revealing research, Edward P. Lazear and James R. Spletzer (2012JHJul22) use the wealth of data in the valuable database and resources of the Bureau of Labor Statistics (http://www.bls.gov/data/) in providing clear thought on the nature of the current labor market of the United States. The critical issue of analysis and policy currently is whether unemployment is structural or cyclical. Structural unemployment could occur because of (1) industrial and demographic shifts and (2) mismatches of skills and job vacancies in industries and locations. Consider the aggregate unemployment rate, Y, expressed in terms of share si of a demographic group in an industry i and unemployment rate yi of that demographic group (Lazear and Spletzer 2012JHJul22, 5-6):
Y = ∑isiyi (1)
This equation can be decomposed for analysis as (Lazear and Spletzer 2012JHJul22, 6):
∆Y = ∑i∆siy*i + ∑i∆yis*i (2)
The first term in (2) captures changes in the demographic and industrial composition of the economy ∆si multiplied by the average rate of unemployment y*i , or structural factors. The second term in (2) captures changes in the unemployment rate specific to a group, or ∆yi, multiplied by the average share of the group s*i, or cyclical factors. There are also mismatches in skills and locations relative to available job vacancies. A simple observation by Lazear and Spletzer (2012JHJul22) casts intuitive doubt on structural factors: the rate of unemployment jumped from 4.4 percent in the spring of 2007 to 10 percent in October 2009. By nature, structural factors should be permanent or occur over relative long periods. The revealing result of the exhaustive research of Lazear and Spletzer (2012JHJul22) is:
“The analysis in this paper and in others that we review do not provide any compelling evidence that there have been changes in the structure of the labor market that are capable of explaining the pattern of persistently high unemployment rates. The evidence points to primarily cyclic factors.”
The theory of secular stagnation cannot explain sudden collapse of the US economy and labor markets. There are accentuated cyclic factors for both the entire population and the young population of ages 16 to 24 years. Table Summary provides the total noninstitutional population (ICP) of the US, full-time employment level (FTE), employment (EMP), civilian labor force (CLF), civilian labor force participation rate (CLFP), employment/population ratio (EPOP) and unemployment level (UNE). Secular stagnation would not be secular but immediate. All indicators of the labor market weakened sharply during the contraction and did not recover. Population continued to grow but all other variables collapsed and did not recover. The theory of secular stagnation departs from an aggregate production function in which output grows with the use of labor, capital and technology (see Pelaez and Pelaez, Globalization and the State, Vol. I (2008a), 11-6). Hansen (1938, 1939) finds secular stagnation in lower growth of an aging population. In the current US economy, Table Summary shows that population is dynamic while the labor market is fractured. There is key explanation in the behavior of the civilian labor force participation rate (CLFP) and the employment population ratio (EPOP) that collapsed during the global recession with inadequate recovery. Abandoning job searches are difficult to capture in labor statistics but likely explain the decline in the participation of the population in the labor force. Allowing for abandoning job searches, the total number of people unemployed or underemployed is 26.8 million or 16.3 percent of the effective labor force (http://cmpassocregulationblog.blogspot.com/2014/07/financial-valuations-twenty-seven.html).
Table Summary Total, US, Total Noninstitutional Civilian Population, Full-time Employment, Employment, Civilian Labor Force, Civilian Labor Force Participation Rate, Employment Population Ratio, Unemployment, NSA, Millions and Percent
ICP | FTE | EMP | CLF | CLFP | EPOP | UNE | |
2006 | 228.8 | 119.7 | 144.4 | 151.4 | 66.2 | 63.1 | 7.0 |
2009 | 235.8 | 112.6 | 139.9 | 154.1 | 65.4 | 59.3 | 14.3 |
2012 | 243.3 | 114.8 | 142.5 | 155.0 | 63.7 | 58.6 | 12.5 |
2013 | 245.7 | 116.3 | 143.9 | 155.4 | 63.2 | 58.6 | 11.5 |
12/07 | 233.2 | 121.0 | 146.3 | 153.7 | 65.9 | 62.8 | 7.4 |
9/09 | 236.3 | 112.0 | 139.1 | 153.6 | 65.0 | 58.9 | 14.5 |
6/14 | 247.8 | 119.5 | 147.1 | 157.0 | 63.4 | 59.4 | 9.9 |
ICP: Total Noninstitutional Civilian Population; FT: Full-time Employment Level, EMP: Total Employment Level; CLF: Civilian Labor Force; CLFP: Civilian Labor Force Participation Rate; EPOP: Employment Population Ratio; UNE: Unemployment
Source: Bureau of Labor Statistics
The same situation is present in the labor market for young people in ages 16 to 24 years with data in Table Summary Youth. The youth noninstitutional civilian population (ICP) continued to increase during and after the global recession. There is the same disastrous labor market with decline for young people in employment (EMP), civilian labor force (CLF), civilian labor force participation rate (CLFP) and employment population ratio (EPOP). There are only increases for unemployment of young people (UNE) and youth unemployment rate (UNER). If aging were a factor of secular stagnation, growth of population of young people would attract a premium in remuneration in labor markets. The sad fact is that young people are also facing tough labor markets. The application of the theory of secular stagnation to the US economy and labor markets is void of reality in the form of key facts, which are best explained by accentuated cyclic factors analyzed by Lazear and Spletzer (2012JHJul22).
Table Summary Youth, US, Youth, Ages 16 to 24 Years, Noninstitutional Civilian Population, Full-time Employment, Employment, Civilian Labor Force, Civilian Labor Force Participation Rate, Employment Population Ratio, Unemployment, NSA, Millions and Percent
ICP | EMP | CLF | CLFP | EPOP | UNE | UNER | |
2006 | 36.9 | 20.0 | 22.4 | 60.6 | 54.2 | 2.4 | 10.5 |
2009 | 37.6 | 17.6 | 21.4 | 56.9 | 46.9 | 3.8 | 17.6 |
2012 | 38.7 | 17.8 | 21.3 | 54.9 | 46.0 | 3.5 | 16.2 |
2013 | 38.8 | 18.1 | 21.4 | 55.0 | 46.5 | 3.3 | 15.5 |
12/07 | 37.5 | 19.4 | 21.7 | 57.8 | 51.6 | 2.3 | 10.7 |
9/09 | 37.6 | 17.0 | 20.7 | 55.2 | 45.1 | 3.8 | 18.2 |
6/14 | 38.7 | 19.4 | 22.9 | 59.0 | 50.1 | 3.4 | 15.0 |
ICP: Youth Noninstitutional Civilian Population; EMP: Youth Employment Level; CLF: Youth Civilian Labor Force; CLFP: Youth Civilian Labor Force Participation Rate; EPOP: Youth Employment Population Ratio; UNE: Unemployment; UNER: Youth Unemployment Rate
Source: Bureau of Labor Statistics
The United States is experiencing high youth unemployment as in European economies. Table I-10 provides the employment level for ages 16 to 24 years of age estimated by the Bureau of Labor Statistics. On an annual basis, youth employment fell from 20.041 million in 2006 to 17.362 million in 2011 or 2.679 million fewer youth jobs and to 17.834 million in 2012 or 2.207 million fewer jobs. Youth employment fell from 20.041 million in 2006 to 18.057 million in 2013 or 1.984 million fewer jobs. During the seasonal peak months of youth employment in the summer from Jun to Aug, youth employment has fallen by more than two million jobs relative to 21.914 million in Jul 2006 with 19.684 million in Jul 2013 for 2.230 million fewer youth jobs. The number of jobs ages 16 to 24 years fell from 21.167 million in Aug 2006 to 18.636 million in Aug 2013 or by 2.531 million. The number of youth jobs fell from 19.604 million in Sep 2006 to 18.043 million in Sep 2013 or 1.561 million fewer youth jobs. The number of youth jobs fell from 20.129 million in Dec 2006 to 18.106 million in Dec 2013 or 2.023 million fewer jobs. The number of youth jobs fell from 21.268 million in Jun 2006 million to 19.421 million in Jun 2014 or 1.847 million fewer youth jobs. The civilian noninstitutional population ages 16 to 24 years increased from 37.443 million in Jul 2007 to 38.861 million in Jul 2013 or by 1.418 million while the number of jobs for ages 16 to 24 years fell by 2.230 million from 21.914 million in Jul 2006 to 19.684 million in Jul 2013. The civilian noninstitutional population for ages 16 to 24 years increased from 37.455 million in Aug 2007 to 38.841 million in Aug 2013 or by 1.386 million while the number of youth jobs fell by 1.777 million. The civilian noninstitutional population increased from 37.467 million in Sep 2007 to 38.822 million in Sep 2013 or by 1.355 million while the number of youth jobs fell by 1.455 million. The civilian noninstitutional population increased from 37.480 million in Oct 2007 to 38.804 million in Oct 2013 or by 1.324 million while the number of youth jobs decreased 1.877 million from Oct 2006 to Oct 2013. The civilian noninstitutional population increased from 37.076 million in Nov 2006 to 38.798 million in Nov 2013 or by 1.722 million while the number of youth jobs fell 1.799 million. The civilian noninstitutional population increased from 37.518 million in Dec 2007 to 38.790 million in Dec 2013 or by 1.272 million while the number of youth jobs fell 2.023 million from Dec 2006 to Dec 2013. The youth civilian noninstitutional population increased 1.488 million from 37.282 million in in Jan 2007 to 38.770 million in Jan 2014 while the number of youth jobs fell 2.035 million. The youth civilian noninstitutional population increased 1.464 million from 37.302 in Feb 2007 to 38.766 million in Feb 2014 while the number of youth jobs decreased 2.058 million. The civilian noninstitutional population increased 1.437 million from 37.324 million in Mar 2007 to 38.761 million in Mar 2014 while jobs for ages 16 to 24 years decreased 1.599 million from 19.538 million in Mar 2007 to 17.939 million in Mar 2014. The civilian noninstitutional population ages 16 to 24 years increased 1.410 million from 37.349 million in Apr 2007 to 38.759 million in Apr 2014 while the number of youth jobs fell 1.347 million. The civilian noninstitutional population increased 1.370 million from 37.379 million in May 2007 to 38.749 million in May 2014 while the number of youth jobs decreased 1.128 million. The civilian noninstitutional population increased 1.330 million from 37.410 million in Jun 2007 to 38.740 million in Jun 2014 while the number of youth jobs fell 1.847 million from 21.268 million in Jun 2006 to 19.421 million in Jun 2014. The hardship does not originate in low growth of population but in underperformance of the economy in the expansion from the business cycle. There are two hardships behind these data. First, young people cannot find employment after finishing high school and college, reducing prospects for achievement in older age. Second, students with more modest means cannot find employment to keep them in college.
Table I-10, US, Employment Level 16-24 Years, Thousands, NSA
Year | Jan | Feb | Mar | Apr | May | Jun | Nov | Dec |
2001 | 19678 | 19745 | 19800 | 19778 | 19648 | 21212 | 19675 | 19547 |
2002 | 18653 | 19074 | 19091 | 19108 | 19484 | 20828 | 19397 | 19394 |
2003 | 18811 | 18880 | 18709 | 18873 | 19032 | 20432 | 19163 | 19136 |
2004 | 18852 | 18841 | 18752 | 19184 | 19237 | 20587 | 19615 | 19619 |
2005 | 18858 | 18670 | 18989 | 19071 | 19356 | 20949 | 19750 | 19733 |
2006 | 19003 | 19182 | 19291 | 19406 | 19769 | 21268 | 19903 | 20129 |
2007 | 19407 | 19415 | 19538 | 19368 | 19457 | 21098 | 19660 | 19361 |
2008 | 18724 | 18546 | 18745 | 19161 | 19254 | 20466 | 18454 | 18378 |
2009 | 17467 | 17606 | 17564 | 17739 | 17588 | 18726 | 16689 | 16615 |
2010 | 16166 | 16412 | 16587 | 16764 | 17039 | 17920 | 16946 | 16727 |
2011 | 16512 | 16638 | 16898 | 16970 | 17045 | 18180 | 17402 | 17234 |
2012 | 16944 | 17150 | 17301 | 17387 | 17681 | 18907 | 17877 | 17604 |
2013 | 17183 | 17257 | 17271 | 17593 | 17704 | 19125 | 18104 | 18106 |
2014 | 17372 | 17357 | 17939 | 18021 | 18329 | 19421 |
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
Chart I-21 provides US employment level ages 16 to 24 years from 2002 to 2014. Employment level is sharply lower in Jun 2014 relative to the peak in 2007. The following Chart I-21A relates youth employment and youth civilian noninstitutional population.
Chart I-21, US, Employment Level 16-24 Years, Thousands SA, 2001-2014
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
Chart I-21A provides the US civilian noninstitutional population ages 16 to 24 years not seasonally adjusted from 2001 to 2014. The civilian noninstitutional population ages 16 to 24 years increased from 37.443 million in Jul 2007 to 38.861 million in Jul 2013 or by 1.418 million while the number of jobs for ages 16 to 24 years fell by 2.230 million from 21.914 million in Jul 2006 to 19.684 million in Jul 2013. The civilian noninstitutional population for ages 16 to 24 years increased from 37.455 million in Aug 2007 to 38.841 million in Aug 2013 or by 1.386 million while the number of youth jobs fell by 1.777 million. The civilian noninstitutional population increased from 37.467 million in Sep 2007 to 38.822 million in Sep 2013 or by 1.355 million while the number of youth jobs fell by 1.455 million. The civilian noninstitutional population increased from 37.480 million in Oct 2007 to 38.804 million in Oct 2013 or by 1.324 million while the number of youth jobs decreased 1.877 million from Oct 2006 to Oct 2013. The civilian noninstitutional population increased from 37.076 million in Nov 2006 to 38.798 million in Nov 2013 or by 1.722 million while the number of youth jobs fell 1.799 million. The civilian noninstitutional population increased from 37.518 million in Dec 2007 to 38.790 million in Dec 2013 or by 1.272 million while the number of youth jobs fell 2.023 million from Dec 2006 to Dec 2013. The youth civilian noninstitutional population increased 1.488 million from 37.282 million in in Jan 2007 to 38.770 million in Jan 2014 while the number of youth jobs fell 2.035 million. The youth civilian noninstitutional population increased 1.464 million from 37.302 in Feb 2007 to 38.766 million in Feb 2014 while the number of youth jobs decreased 2.058 million. The civilian noninstitutional population increased 1.437 million from 37.324 million in Mar 2007 to 38.761 million in Mar 2014 while jobs for ages 16 to 24 years decreased 1.599 million from 19.538 million in Mar 2007 to 17.939 million in Mar 2014. The civilian noninstitutional population ages 16 to 24 years increased 1.410 million from 37.349 million in Apr 2007 to 38.759 million in Apr 2014 while the number of youth jobs fell 1.347 million. The civilian noninstitutional population increased 1.370 million from 37.379 million in May 2007 to 38.749 million in May 2014 while the number of youth jobs decreased 1.128 million. The civilian noninstitutional population increased 1.330 million from 37.410 million in Jun 2007 to 38.740 million in Jun 2014 while the number of youth jobs fell 1.847 million from 21.268 million in Jun 2006 to 19.421 million in Jun 2014. The hardship does not originate in low growth of population but in underperformance of the economy in the expansion from the business cycle. There are two hardships behind these data. First, young people cannot find employment after finishing high school and college, reducing prospects for achievement in older age. Second, students with more modest means cannot find employment to keep them in college.
Chart I-21A, US, Civilian Noninstitutional Population Ages 16 to 24 Years, Thousands NSA, 2001-2014
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
Chart I-21B provides the civilian labor force of the US ages 16 to 24 years NSA from 2001 to 2014. The US civilian labor force ages 16 to 24 years fell from 24.339 million in Jul 2007 to 23.506 million in Jul 2013, by 0.833 million or decline of 3.4 percent, while the civilian noninstitutional population NSA increased from 37.443 million in Jul 2007 to 38.861 million in Jul 2013, by 1.418 million or 3.8 percent. The US civilian labor force ages 16 to 24 fell from 22.801 million in Aug 2007 to 22.089 million in Aug 2013, by 0.712 million or 3.1 percent, while the noninstitutional population for ages 16 to 24 years increased from 37.455 million in Aug 2007 to 38.841 million in Aug 2013, by 1.386 million or 3.7 percent. The US civilian labor force ages 16 to 24 years fell from 21.917 million in Sep 2007 to 21.183 million in Sep 2013, by 0.734 million or 3.3 percent while the civilian noninstitutional youth population increased from 37.467 million in Sep 2007 to 38.822 million in Sep 2013 by 1.355 million or 3.6 percent. The US civilian labor force fell from 21.821 million in Oct 2007 to 21.003 million in Oct 2013, by 0.818 million or 3.7 percent while the noninstitutional youth population increased from 37.480 million in Oct 2007 to 38.804 million in Oct 2013, by 1.324 million or 3.5 percent. The US youth civilian labor force fell from 21.909 million in Nov 2007 to 20.825 million in Nov 2013, by 1.084 million or 4.9 percent while the civilian noninstitutional youth population increased from 37.076 million in Nov 2006 to 38.798 million in Nov 2013 or by 1.722 million. The US youth civilian labor force fell from 21.684 million in Dec 2007 to 20.642 million in Dec 2013, by 1.042 million or 4.8 percent, while the civilian noninstitutional population increased from 37.518 million in Dec 2007 to 38.790 million in Dec 2013, by 1.272 million or 3.4 percent. The youth civilian labor force of the US fell from 21.770 million in Jan 2007 to 20.423 million in Jan 2014, by 1.347 million or 6.2 percent while the youth civilian noninstitutional population increased 37.282 million in Jan 2007 to 38.770 million in Jan 2014, by 1.488 million or 4.0 percent. The youth civilian labor force of the US fell 1.255 million from 21.645 million in Feb 2007 to 20.390 million in Feb 2014 while the youth civilian noninstitutional population increased 1.464 million from 37.302 million in Feb 2007 to 38.766 million in Feb 2014. The youth civilian labor force of the US fell 0.693 million from 21.634 million in Mar 2007 to 20.941 million in Mar 2014 or 3.2 person while the youth noninstitutional civilian population 1.437 million from 37.324 million in Mar 2007 to 38.761 million in Mar 2014 or 3.9 percent. The US youth civilian labor force fell 981 thousand from 21.442 million in Apr 2007 to 20.461 million in Apr 2014 while the youth civilian noninstitutional population increased from 37.349 million in Apr 2007 to 38.759 million in Apr 2014 by 1.410 thousand or 3.8 percent. The youth civilian labor force decreased from 21.659 million in May 2007 to 21.160 million in May 2014 by 499 thousand or 2.3 percent while the youth civilian noninstitutional population increased 1.370 million from 37.739 million in May 2007 to 38.749 million in May 2007 or by 2.7 percent. The youth civilian labor force decreased from 24.128 million in Jun 2006 to 22.851 million in Jun 2014 by 1.277 million or 5.3 percent while the civilian noninstitutional population increased from 36.943 million in Jun 2006 to 38.740 million in Jun 2014 by 1.797 or 4.9 percent. Youth in the US abandoned their participation in the labor force because of the frustration that there are no jobs available for them.
Chart I-21B, US, Civilian Labor Force Ages 16 to 24 Years, Thousands NSA, 2001-2014
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
Chart I-21C provides the ratio of labor force to noninstitutional population or labor force participation of ages 16 to 24 years not seasonally adjusted. The US labor force participation rates for ages 16 to 24 years fell from 66.7 in Jul 2006 to 60.5 in Jul 2013 because of the frustration of young people who believe there may not be jobs available for them. The US labor force participation rate of young people fell from 63.9 in Aug 2006 to 56.9 in Aug 2013. The US labor force participation rate of young people fell from 59.1 percent in Sep 2006 to 54.6 percent in Sep 2013. The US labor force participation rate of young people fell from 59.7 percent in Oct 2006 to 54.1 in Oct 2013. The US labor force participation rate of young people fell from 59.7 percent in Nov 2006 to 53.7 percent in Nov 2013. The US labor force participation rate fell from 57.8 in Dec 2007 to 53.2 in Dec 2013. The youth labor force participation rate fell from 58.4 in Jan 2007 to 52.7 in Jan 2014. The US youth labor force participation rate fell from 58.0 percent in Feb 2007 to 52.6 percent in Feb 2013. The labor force participation rate of ages 16 to 24 years fell from 58.0 in Mar 2007 to 54.0 in Mar 2014. The labor force participation rate of ages 16 to 24 years fell from 57.4 in Apr 2007 to 52.8 in Apr 2014. The labor force participation rate of ages 16 to 24 years fell from 57.9 in May 2007 to 54.6 in May 2014. The labor force participation rate of ages 16 to 24 years fell from 65.3 in Jun 2006 to 59.0 in Jun 2014. Many young people abandoned searches for employment, dropping from the labor force.
Chart I-21C, US, Labor Force Participation Rate Ages 16 to 24 Years, NSA, 2001-2014
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
An important measure of the job market is the number of people with jobs relative to population available for work (civilian noninstitutional population) or employment/population ratio. Chart I-21D provides the employment population ratio for ages 16 to 24 years. The US employment/population ratio NSA for ages 16 to 24 years collapsed from 59.2 in Jul 2006 to 50.7 in Jul 2013. The employment population ratio for ages 16 to 24 years dropped from 57.2 in Aug 2006 to 48.0 in Aug 2013. The employment population ratio for ages to 16 to 24 years declined from 52.9 in Sep 2006 to 46.5 in Sep 2013. The employment population ratio for ages 16 to 24 years fell from 53.6 in Oct 2006 to 46.3 in Oct 2013. The employment population ratio for ages 16 to 24 years fell from 53.7 in Nov 2007 to 46.7 in Nov 2013. The US employment population ratio for ages 16 to 24 years fell from 51.6 in Dec 2007 to 46.7 in Dec 2013. The US employment population ratio fell from 52.1 in Jan 2007 to 44.8 in Jan 2014. The US employment population ratio for ages 16 to 24 fell from 52.0 in Jan 2007 to 44.8 in Jan 2014. The US employment population ratio for ages 16 to 24 years fell from 52.3 in Mar 2007 to 46.3 in Mar 2014. The US employment population ratio for ages 16 to 24 years fell from 51.9 in Apr 2007 to 46.5 in Apr 2014. The US employment population ratio for ages 16 to 24 years fell from 52.1 in May 2007 to 47.3 in May 2014. The US employment population ratio for ages 16 to 24 years fell from 57.6 in Jun 2006 to 50.1 in Jun 2014. Chart I-21D shows vertical drop during the global recession without recovery.
Chart I-21D, US, Employment Population Ratio Ages 16 to 24 Years, Thousands NSA, 2001-2014
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
Table I-11 provides US unemployment level ages 16 to 24 years. The number unemployed ages 16 to 24 years increased from 2342 thousand in 2007 to 3634 thousand in 2011 or by 1.292 million and 3451 thousand in 2012 or by 1.109 million. The unemployment level ages 16 to 23 years increased from 2342 in 2007 to 3324 thousand in 2013 or by 0.982 million. The unemployment level ages 16 to 24 years rose from 2.883 million in Jun 2007 to 3.429 million in Jun 2014 or by 0.546 million. This situation may persist for many years.
Table I-11, US, Unemployment Level 16-24 Years, NSA, Thousands
Year | Jan | Feb | Mar | Apr | May | Jun | Nov | Dec | Annual |
2001 | 2250 | 2258 | 2253 | 2095 | 2171 | 2775 | 2470 | 2412 | 2371 |
2002 | 2754 | 2731 | 2822 | 2515 | 2568 | 3167 | 2570 | 2374 | 2683 |
2003 | 2748 | 2740 | 2601 | 2572 | 2838 | 3542 | 2522 | 2248 | 2746 |
2004 | 2767 | 2631 | 2588 | 2387 | 2684 | 3191 | 2448 | 2294 | 2638 |
2005 | 2661 | 2787 | 2520 | 2398 | 2619 | 3010 | 2369 | 2055 | 2521 |
2006 | 2366 | 2433 | 2216 | 2092 | 2254 | 2860 | 2242 | 2007 | 2353 |
2007 | 2363 | 2230 | 2096 | 2074 | 2203 | 2883 | 2250 | 2323 | 2342 |
2008 | 2633 | 2480 | 2347 | 2196 | 2952 | 3450 | 2833 | 2928 | 2830 |
2009 | 3278 | 3457 | 3371 | 3321 | 3851 | 4653 | 3699 | 3532 | 3760 |
2010 | 3983 | 3888 | 3748 | 3803 | 3854 | 4481 | 3561 | 3352 | 3857 |
2011 | 3851 | 3696 | 3520 | 3365 | 3628 | 4248 | 3287 | 3161 | 3634 |
2012 | 3416 | 3507 | 3294 | 3175 | 3438 | 4180 | 3102 | 3153 | 3451 |
2013 | 3674 | 3449 | 3261 | 3129 | 3478 | 4198 | 2721 | 2536 | 3324 |
2014 | 3051 | 3033 | 3002 | 2440 | 2831 | 3429 |
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
Chart I-22 provides the unemployment level for ages 16 to 24 from 2001 to 2014. The level rose sharply from 2007 to 2010 with tepid improvement into 2012 and deterioration into 2013-2014 with recent marginal improvement alternating with deterioration.
Chart I-22, US, Unemployment Level 16-24 Years, Thousands SA, 2001-2014
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
Table I-12 provides the rate of unemployment of young peoples in ages 16 to 24 years. The annual rate jumped from 10.5 percent in 2007 to 18.4 percent in 2010, 17.3 percent in 2011 and 16.2 percent in 2012. The rate of youth unemployment fell marginally to 15.5 percent in 2013. During the seasonal peak in Jul, the rate of youth unemployed was 18.1 percent in Jul 2011, 17.1 percent in Jul 2012 and 16.3 percent in Jul 2013 compared with 10.8 percent in Jul 2007. The rate of youth unemployment rose from 11.2 percent in Jul 2006 to 16.3 percent in Jul 2013 and likely higher if adding those who ceased searching for a job in frustration none may be available. The rate of youth unemployment increased from 9.1 percent in Dec 2006 to 12.3 percent in Dec 2013. The rate of youth unemployment increased from 10.9 percent in Jan 2007 to 14.9 percent in Jan and Feb 2014. The rate of youth unemployment increased from 9.7 percent in Mar 2007 to 14.3 percent in Mar 2014. The rate of youth unemployment increased from 9.7 percent in Apr 2007 to 11.9 percent in Apr 2014. The rate of youth unemployment increased from 10.2 percent in May 2007 to 13.4 percent in May 2014. The rate of youth unemployment increased from 12.0 percent in Jun 2007 to 15.0 percent in Jun 2014. The actual rate is higher because of the difficulty in counting those dropping from the labor force because they believe there are no jobs available for them.
Table I-12, US, Unemployment Rate 16-24 Years, Thousands, NSA
Year | Jan | Feb | Mar | Apr | May | Jun | Nov | Dec | Annual |
2001 | 10.3 | 10.3 | 10.2 | 9.6 | 10.0 | 11.6 | 11.2 | 11.0 | 10.6 |
2002 | 12.9 | 12.5 | 12.9 | 11.6 | 11.6 | 13.2 | 11.7 | 10.9 | 12.0 |
2003 | 12.7 | 12.7 | 12.2 | 12.0 | 13.0 | 14.8 | 11.6 | 10.5 | 12.4 |
2004 | 12.8 | 12.3 | 12.1 | 11.1 | 12.2 | 13.4 | 11.1 | 10.5 | 11.8 |
2005 | 12.4 | 13.0 | 11.7 | 11.2 | 11.9 | 12.6 | 10.7 | 9.4 | 11.3 |
2006 | 11.1 | 11.3 | 10.3 | 9.7 | 10.2 | 11.9 | 10.1 | 9.1 | 10.5 |
2007 | 10.9 | 10.3 | 9.7 | 9.7 | 10.2 | 12.0 | 10.3 | 10.7 | 10.5 |
2008 | 12.3 | 11.8 | 11.1 | 10.3 | 13.3 | 14.4 | 13.3 | 13.7 | 12.8 |
2009 | 15.8 | 16.4 | 16.1 | 15.8 | 18.0 | 19.9 | 18.1 | 17.5 | 17.6 |
2010 | 19.8 | 19.2 | 18.4 | 18.5 | 18.4 | 20.0 | 17.4 | 16.7 | 18.4 |
2011 | 18.9 | 18.2 | 17.2 | 16.5 | 17.5 | 18.9 | 15.9 | 15.5 | 17.3 |
2012 | 16.8 | 17.0 | 16.0 | 15.4 | 16.3 | 18.1 | 14.8 | 15.2 | 16.2 |
2013 | 17.6 | 16.7 | 15.9 | 15.1 | 16.4 | 18.0 | 13.1 | 12.3 | 15.5 |
2014 | 14.9 | 14.9 | 14.3 | 11.9 | 13.4 | 15.0 |
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
Chart I-23 provides the BLS estimate of the not-seasonally-adjusted rate of youth unemployment for ages 16 to 24 years from 2001 to 2014. The rate of youth unemployment increased sharply during the global recession of 2008 and 2009 but has failed to drop to earlier lower levels because of low growth of GDP. Long-term economic performance in the United States consisted of trend growth of GDP at 3 percent per year and of per capita GDP at 2 percent per year as measured for 1870 to 2010 by Robert E. Lucas (2011May). The economy returned to trend growth after adverse events such as wars and recessions. The key characteristic of adversities such as recessions was much higher rates of growth in expansion periods that permitted the economy to recover output, income and employment losses that occurred during the contractions. Over the business cycle, the economy compensated the losses of contractions with higher growth in expansions to maintain trend growth of GDP of 3 percent and of GDP per capita of 2 percent.
Chart I-23, US, Unemployment Rate 16-24 Years, Percent, NSA, 2001-2014
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
Chart I-24 provides longer perspective with the rate of youth unemployment in ages 16 to 24 years from 1948 to 2014. The rate of youth unemployment rose to 20 percent during the contractions of the early 1980s and also during the contraction of the global recession in 2008 and 2009. The data illustrate again the argument in this blog that the contractions of the early 1980s are the valid framework for comparison with the global recession of 2008 and 2009 instead of misleading comparisons with the 1930s. During the initial phase of recovery, the rate of youth unemployment 16 to 24 years NSA fell from 18.9 percent in Jun 1983 to 14.5 percent in Jun 1984. In contrast, the rate of youth unemployment 16 to 24 years was nearly the same during the expansion after IIIQ2009: 17.5 percent in Dec 2009, 16.7 percent in Dec 2010, 15.5 percent in Dec 2011, 15.2 percent in Dec 2012, 17.6 percent in Jan 2013, 16.7 percent in Feb 2013, 15.9 percent in Mar 2013, 15.1 percent in Apr 2013. The rate of youth unemployment was 16.4 percent in May 2013, 18.0 percent in Jun 2013, 16.3 percent in Jul 2013 and 15.6 percent in Aug 2013. In Sep 2006, the rate of youth unemployment was 10.5 percent, increasing to 14.8 percent in Sep 2013. The rate of youth unemployment was 10.3 in Oct 2007, increasing to 14.4 percent in Oct 2013. The rate of youth unemployment was 10.3 percent in Nov 2007, increasing to 13.1 percent in Nov 2013. The rate of youth unemployment was 10.7 percent in Dec 2013, increasing to 12.3 percent in Dec 2013. The rate of youth unemployment was 10.9 percent in Jan 2007, increasing to 14.9 percent in Jan 2014. The rate of youth unemployment was 10.3 percent in Feb 2007, increasing to 14.9 percent in Feb 2014. The rate of youth unemployment was 9.7 percent in Mar 2007, increasing to 14.3 percent in Mar 2014. The rate of youth unemployment was 9.7 percent in Apr 2007, increasing to 11.9 percent in Apr 2014. The rate of youth unemployment was 10.2 percent in May 2007, increasing to 13.4 percent in May 2014. The rate of youth unemployment was 12.0 percent in Jun 2007, increasing to 15.0 percent in Jun 2014. The difference originates in the vigorous seasonally-adjusted annual equivalent average rate of GDP growth of 5.9 percent during the recovery from IQ1983 to IVQ1985 and 4.9 percent from IQ1983 to IIIQ1987 compared with 2.1 percent on average during the first nineteen quarters of expansion from IIIQ2009 to IQ2014 (http://cmpassocregulationblog.blogspot.com/2014/06/financial-indecision-mediocre-cyclical.html). US economic growth has been at only 2.1 percent on average in the cyclical expansion in the 19 quarters from IIIQ2009 to IQ2014. Boskin (2010Sep) measures that the US economy grew at 6.2 percent in the first four quarters and 4.5 percent in the first 12 quarters after the trough in the second quarter of 1975; and at 7.7 percent in the first four quarters and 5.8 percent in the first 12 quarters after the trough in the first quarter of 1983 (Professor Michael J. Boskin, Summer of Discontent, Wall Street Journal, Sep 2, 2010 http://professional.wsj.com/article/SB10001424052748703882304575465462926649950.html). There are new calculations using the revision of US GDP and personal income data since 1929 by the Bureau of Economic Analysis (BEA) (http://bea.gov/iTable/index_nipa.cfm) and the third estimate of GDP for IQ2014 (http://www.bea.gov/newsreleases/national/gdp/2014/pdf/gdp1q14_3rd.pdf). The average of 7.7 percent in the first four quarters of major cyclical expansions is in contrast with the rate of growth in the first four quarters of the expansion from IIIQ2009 to IIQ2010 of only 2.7 percent obtained by dividing GDP of $14,738.0 billion in IIQ2010 by GDP of $14,356.9 billion in IIQ2009 {[$14,738.0/$14,356.9 -1]100 = 2.7%], or accumulating the quarter on quarter growth rates (http://cmpassocregulationblog.blogspot.com/2014/06/financial-indecision-mediocre-cyclical.html and earlier http://cmpassocregulationblog.blogspot.com/2014/05/financial-volatility-mediocre-cyclical.html). The expansion from IQ1983 to IVQ1985 was at the average annual growth rate of 5.9 percent, 5.4 percent from IQ1983 to IIIQ1986, 5.2 percent from IQ1983 to IVQ1986, 5.0 percent from IQ1983 to IQ1987, 5.0 percent from IQ1983 to IIQ1987, 4.9 percent from IQ1983 to IIIQ1987 and at 7.8 percent from IQ1983 to IVQ1983 (http://cmpassocregulationblog.blogspot.com/2014/06/financial-indecision-mediocre-cyclical.html and earlier http://cmpassocregulationblog.blogspot.com/2014/06/financial-instability-mediocre-cyclical.html). The US maintained growth at 3.0 percent on average over entire cycles with expansions at higher rates compensating for contractions. Growth at trend in the entire cycle from IVQ2007 to IQ2014 would have accumulated to 21.2 percent. GDP in IQ2014 would be $18,172.7 billion (in constant dollars of 2009) if the US had grown at trend, which is higher by $2,348.5 billion than actual $15,824.2 billion. There are about two trillion dollars of GDP less than at trend, explaining the 26.8 million unemployed or underemployed equivalent to actual unemployment of 16.3 percent of the effective labor force (http://cmpassocregulationblog.blogspot.com/2014/07/financial-valuations-twenty-seven.html and earlier http://cmpassocregulationblog.blogspot.com/2014/06/financial-risks-rules-discretionary.html). US GDP in IQ2014 is 12.9 percent lower than at trend. US GDP grew from $14,996.1 billion in IVQ2007 in constant dollars to $15,842.2 billion in IQ2014 or 5.5 percent at the average annual equivalent rate of 0.8 percent. Cochrane (2014Jul2) estimates US GDP at more than 10 percent below trend. The US missed the opportunity to grow at higher rates during the expansion and it is difficult to catch up because growth rates in the final periods of expansions tend to decline. The US missed the opportunity for recovery of output and employment always afforded in the first four quarters of expansion from recessions. Zero interest rates and quantitative easing were not required or present in successful cyclical expansions and in secular economic growth at 3.0 percent per year and 2.0 percent per capita as measured by Lucas (2011May). There is cyclical uncommonly slow growth in the US instead of allegations of secular stagnation.
Chart I-24, US, Unemployment Rate 16-24 Years, Percent NSA, 1948-2014
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
It is more difficult to move to other jobs after a certain age because of fewer available opportunities for mature individuals than for new entrants into the labor force. Middle-aged unemployed are less likely to find another job. Table I-13 provides the unemployment level ages 45 years and over. The number unemployed ages 45 years and over rose from 1.607 million in Oct 2006 to 4.576 million in Oct 2010 or by 184.8 percent. The number of unemployed ages 45 years and over declined to 3.800 million in Oct 2012 that is still higher by 136.5 percent than in Oct 2006. The number unemployed age 45 and over increased from 1.704 million in Nov 2006 to 3.861 million in Nov 2012, or 126.6 percent. The number unemployed age 45 and over is still higher by 98.5 percent at 3.383 million in Nov 2013 than 1.704 million in Nov 2006. The number unemployed age 45 and over jumped from 1.794 million in Dec 2006 to 4.762 million in Dec 2010 or 165.4 percent. At 3.927 million in Dec 2012, mature unemployment is higher by 2.133 million or 118.9 percent higher than 1.794 million in Dec 2006. The level of unemployment of those aged 45 year or more of 3.632 million in Oct 2013 is higher by 2.025 million than 1.607 million in Oct 2006 or higher by 126.0 percent. The number of unemployed 45 years and over increased from 1.794 million in Dec 2006 to 3.378 million in Nov 2013 or 88.3 percent. The annual number of unemployed 45 years and over increased from 1.848 million in 2006 to 3.719 million in 2013 or 101.2 percent. The number of unemployed 45 years and over increased from 2.126 million in Jan 2006 to 4.394 million in Jan 2013, by 2.618 million or 106.7 percent. The number of unemployed 45 years and over rose from 2.126 million in Jan 2006 to 3.508 million in Jan 2014, by 1.382 million or 65.0 percent. The level of unemployed 45 years or older increased 2.051 million or 99.8 percent from 2.056 million in Feb 2006 to 4.107 million in Feb 2013 and at 3.490 million in Feb 2014 is higher by 69.7 percent than in Feb 2006. The number of unemployed 45 years and over increased 2.048 million or 108.9 percent from 1.881 million in Mar 2006 to 3.929 million in Mar 2013 and at 3.394 million in Mar 2014 is higher by 80.4 percent than in Mar 2006. The number of unemployed 45 years and over increased 1.846 million or 100.2 percent from 1.843 million in Apr 2006 to 3.689 million in Apr 2013 and at 3.006 million in Apr 2014 is higher by 1.163 million or 63.1 percent. The number of unemployed ages 45 years and over increased 102.1 percent from 1.784 million in May 2006 to 3.605 million in May 2014 and at 2.913 million in May 2014 is higher by 63.3 percent than in May 2007.
The number of unemployed ages 45 years and over increased 102.1 percent from 1.805 million in Jun 2007 to 3.648 million in Jun 2013 and at 2.832 million in Jun 2014 is higher by 56.9 percent than in Jun 2007. The actual number unemployed is likely much higher because many are not accounted who abandoned job searches in frustration there may not be a job for them. Recent improvements may be illusory.
Table I-13, US, Unemployment Level 45 Years and Over, Thousands NSA
Year | Jan | Feb | Mar | Apr | May | Jun | Nov | Dec | Annual |
2000 | 1498 | 1392 | 1291 | 1062 | 1074 | 1163 | 1242 | 1217 | 1249 |
2001 | 1572 | 1587 | 1533 | 1421 | 1259 | 1371 | 1786 | 1901 | 1576 |
2002 | 2235 | 2280 | 2138 | 2101 | 1999 | 2190 | 2013 | 2210 | 2114 |
2003 | 2495 | 2415 | 2485 | 2287 | 2112 | 2212 | 2132 | 2130 | 2253 |
2004 | 2453 | 2397 | 2354 | 2160 | 2025 | 2182 | 2053 | 2086 | 2149 |
2005 | 2286 | 2286 | 2126 | 1939 | 1844 | 1868 | 1920 | 1963 | 2009 |
2006 | 2126 | 2056 | 1881 | 1843 | 1784 | 1813 | 1704 | 1794 | 1848 |
2007 | 2155 | 2138 | 2031 | 1871 | 1803 | 1805 | 1925 | 2120 | 1966 |
2008 | 2336 | 2336 | 2326 | 2104 | 2095 | 2211 | 3078 | 3485 | 2540 |
2009 | 4138 | 4380 | 4518 | 4172 | 4175 | 4505 | 4655 | 4960 | 4500 |
2010 | 5314 | 5307 | 5194 | 4770 | 4565 | 4564 | 4909 | 4762 | 4879 |
2011 | 5027 | 4837 | 4748 | 4373 | 4356 | 4559 | 4195 | 4182 | 4537 |
2012 | 4458 | 4472 | 4390 | 4037 | 4083 | 4084 | 3861 | 3927 | 4133 |
2013 | 4394 | 4107 | 3929 | 3689 | 3605 | 3648 | 3383 | 3378 | 3719 |
2014 | 3508 | 3490 | 3394 | 3006 | 2913 | 2832 |
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
Chart I-25 provides the level unemployed ages 45 years and over. There was an increase in the recessions of the 1980s, 1991 and 2001 followed by declines to earlier levels. The current expansion of the economy after IIIQ2009 has not been sufficiently vigorous to reduce significantly middle-age unemployment. Recent improvements could be illusory because many abandoned job searches in frustration that there may not be jobs for them and are not counted as unemployed.
Chart I-25, US, Unemployment Level Ages 45 Years and Over, Thousands, NSA, 1976-2014
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
II Collapse of United States Dynamism of Income Growth and Employment Creation. There are four major approaches to the analysis of the depth of the financial crisis and global recession from IVQ2007 (Dec) to IIQ2009 (Jun) and the subpar recovery from IIIQ2009 (Jul) to the present:
(1) Deeper contraction and slower recovery in recessions with financial crises
(2) Counterfactual of avoiding deeper contraction by fiscal and monetary policies
(3) Theory and Reality of Secular Stagnation
(4) Counterfactual that the financial crises and global recession would have been avoided had economic policies been different
(5) Evidence that growth rates are higher after deeper recessions with financial crises.
A counterfactual consists of theory and measurements of what would have occurred otherwise if economic policies or institutional arrangements had been different. This task is quite difficult because economic data are observed with all effects as they actually occurred while the counterfactual attempts to evaluate how data would differ had policies and institutional arrangements been different (see Pelaez and Pelaez, Globalization and the State, Vol. I (2008b), 125, 136; Pelaez 1979, 26-8). Counterfactual data are unobserved and must be calculated using theory and measurement methods. The measurement of costs and benefits of projects or applied welfare economics (Harberger 1971, 1997) specifies and attempts to measure projects such as what would be economic welfare with or without a bridge or whether markets would be more or less competitive in the absence of antitrust and regulation laws (Winston 2006). The “new economic history” of the United States used counterfactuals to measure the economy with or without railroads (Fishlow 1965, Fogel 1964) and in analyzing slavery (Fogel and Engerman 1974). A critical counterfactual in economic history is how Britain surged ahead of France (North and Weingast 1989). These four approaches are discussed below in turn followed with comparison of the two recessions of the 1980s from IQ1980 (Jan) to IIIQ1980 (Jul) and from IIIQ1981 (Jul) to IVQ1982 (Nov) with the recession from IVQ2007 (Dec) to IIQ2009 (Jun) as dated by the National Bureau of Economic Research (NBER http://www.nber.org/cycles.html). These comparisons are not idle exercises, defining the interpretation of history and even possibly critical policies and institutional arrangements. There is active debate on these issues (Bordo 2012Oct 21 http://www.bloomberg.com/news/2012-10-21/why-this-u-s-recovery-is-weaker.html Reinhart and Rogoff, 2012Oct14 http://www.economics.harvard.edu/faculty/rogoff/files/Is_US_Different_RR_3.pdf Taylor 2012Oct 25 http://www.johnbtaylorsblog.blogspot.co.uk/2012/10/an-unusually-weak-recovery-as-usually.html, Wolf 2012Oct23 http://www.ft.com/intl/cms/s/0/791fc13a-1c57-11e2-a63b-00144feabdc0.html#axzz2AotsUk1q).
(1) Lower Growth Rates in Recoveries from Recessions with Financial Crises. A monumental effort of data gathering, calculation and analysis by Professors Carmen M. Reinhart and Kenneth Rogoff at Harvard University is highly relevant to banking crises, financial crash, debt crises and economic growth (Reinhart 2010CB; Reinhart and Rogoff 2011AF, 2011Jul14, 2011EJ, 2011CEPR, 2010FCDC, 2010GTD, 2009TD, 2009AFC, 2008TDPV; see also Reinhart and Reinhart 2011Feb, 2010AF and Reinhart and Sbrancia 2011). See http://cmpassocregulationblog.blogspot.com/2011/07/debt-and-financial-risk-aversion-and.html. The dataset of Reinhart and Rogoff (2010GTD, 1) is quite unique in breadth of countries and over time periods:
“Our results incorporate data on 44 countries spanning about 200 years. Taken together, the data incorporate over 3,700 annual observations covering a wide range of political systems, institutions, exchange rate and monetary arrangements and historic circumstances. We also employ more recent data on external debt, including debt owed by government and by private entities.”
Reinhart and Rogoff (2010GTD, 2011CEPR) classify the dataset of 2317 observations into 20 advanced economies and 24 emerging market economies. In each of the advanced and emerging categories, the data for countries is divided into buckets according to the ratio of gross central government debt to GDP: below 30, 30 to 60, 60 to 90 and higher than 90 (Reinhart and Rogoff 2010GTD, Table 1, 4). Median and average yearly percentage growth rates of GDP are calculated for each of the buckets for advanced economies. There does not appear to be any relation for debt/GDP ratios below 90. The highest growth rates are for debt/GDP ratios below 30: 3.7 percent for the average and 3.9 percent for the median. Growth is significantly lower for debt/GDP ratios above 90: 1.7 percent for the average and 1.9 percent for the median. GDP growth rates for the intermediate buckets are in a range around 3 percent: the highest 3.4 percent average is for the bucket 60 to 90 and 3.1 percent median for 30 to 60. There is even sharper contrast for the United States: 4.0 percent growth for debt/GDP ratio below 30; 3.4 percent growth for debt/GDP ratio of 30 to 60; 3.3 percent growth for debt/GDP ratio of 60 to 90; and minus 1.8 percent, contraction, of GDP for debt/GDP ratio above 90.
For the five countries with systemic financial crises—Iceland, Ireland, UK, Spain and the US—real average debt levels have increased by 75 percent between 2007 and 2009 (Reinhart and Rogoff 2010GTD, Figure 1). The cumulative increase in public debt in the three years after systemic banking crisis in a group of episodes after World War II is 86 percent (Reinhart and Rogoff 2011CEPR, Figure 2, 10).
An important concept is “this time is different syndrome,” which “is rooted in the firmly-held belief that financial crises are something that happens to other people in other countries at other times; crises do not happen here and now to us” (Reinhart and Rogoff 2010FCDC, 9). There is both an arrogance and ignorance in “this time is different” syndrome, as explained by Reinhart and Rogoff (2010FCDC, 34):
“The ignorance, of course, stems from the belief that financial crises happen to other people at other time in other places. Outside a small number of experts, few people fully appreciate the universality of financial crises. The arrogance is of those who believe they have figured out how to do things better and smarter so that the boom can long continue without a crisis.”
There is sober warning by Reinhart and Rogoff (2011CEPR, 42) based on the momentous effort of their scholarly data gathering, calculation and analysis:
“Despite considerable deleveraging by the private financial sector, total debt remains near its historic high in 2008. Total public sector debt during the first quarter of 2010 is 117 percent of GDP. It has only been higher during a one-year stint at 119 percent in 1945. Perhaps soaring US debt levels will not prove to be a drag on growth in the decades to come. However, if history is any guide, that is a risky proposition and over-reliance on US exceptionalism may only be one more example of the ‘This Time is Different’ syndrome.”
As both sides of the Atlantic economy maneuver around defaults, the experience on debt and growth deserves significant emphasis in research and policy. The world economy is slowing with high levels of unemployment in advanced economies. Countries do not grow themselves out of unsustainable debts but rather through de facto defaults by means of financial repression and in some cases through inflation. The conclusion is that this time is not different.
Professor Alan M. Taylor (2012) at the University of Virginia analyzes own and collaborative research on 140 years of history with data from 14 advanced economies in the effort to elucidate experience preceding, during and after financial crises. The conclusion is (Allan M. Taylor 2012, 8):
“Recessions might be painful, but they tend to be even more painful when combined with financial crises or (worse) global crises, and we already know that post-2008 experience will not overturn this conclusion. The impact on credit is also very strong: financial crises lead to strong setbacks in the rate of growth of loans as compared to what happens in normal recessions, and this effect is strong for global crises. Finally, inflation generally falls in recessions, but the downdraft is stronger in financial crisis times.”
Alan M. Taylor (2012) also finds that advanced economies entered the global recession with the largest financial sector in history. There was doubling after 1980 of the ratio of loans to GDP and tripling of the size of bank balance sheets. In contrast, in the period from 1950 to 1970 there was high investment, savings and growth in advanced economies with firm regulation of finance and controls of foreign capital flows.
(2) Counterfactual of the Global Recession. There is a difficult decision on when to withdraw the fiscal stimulus that could have adverse consequences on current growth and employment analyzed by Krugman (2011Jun18). CBO (2011JunLTBO, Chapter 2) considers the timing of withdrawal as well as the equally tough problems that result from not taking prompt action to prevent a possible debt crisis in the future. Krugman (2011Jun18) refers to Eggertsson and Krugman (2010) on the possible contractive effects of debt. The world does not become poorer as a result of debt because an individual’s asset is another’s liability. Past levels of credit may become unacceptable by credit tightening, such as during a financial crisis. Debtors are forced into deleveraging, which results in expenditure reduction, but there may not be compensatory effects by creditors who may not be in need of increasing expenditures. The economy could be pushed toward the lower bound of zero interest rates, or liquidity trap, remaining in that threshold of deflation and high unemployment.
Analysis of debt can lead to the solution of the timing of when to cease stimulus by fiscal spending (Krugman 2011Jun18). Excessive debt caused the financial crisis and global recession and it is difficult to understand how more debt can recover the economy. Krugman (2011Jun18) argues that the level of debt is not important because one individual’s asset is another individual’s liability. The distribution of debt is important when economic agents with high debt levels are encountering different constraints than economic agents with low debt levels. The opportunity for recovery may exist in borrowing by some agents that can adjust the adverse effects of past excessive borrowing by other agents. As Krugman (2011Jun18, 20) states:
“Suppose, in particular, that the government can borrow for a while, using the borrowed money to buy useful things like infrastructure. The true social cost of these things will be very low, because the spending will be putting resources that would otherwise be unemployed to work. And government spending will also make it easier for highly indebted players to pay down their debt; if the spending is sufficiently sustained, it can bring the debtors to the point where they’re no longer so severely balance-sheet constrained, and further deficit spending is no longer required to achieve full employment. Yes, private debt will in part have been replaced by public debt – but the point is that debt will have been shifted away from severely balance-sheet-constrained players, so that the economy’s problems will have been reduced even if the overall level of debt hasn’t fallen. The bottom line, then, is that the plausible-sounding argument that debt can’t cure debt is just wrong. On the contrary, it can – and the alternative is a prolonged period of economic weakness that actually makes the debt problem harder to resolve.”
Besides operational issues, the consideration of this argument would require specifying and measuring two types of gains and losses from this policy: (1) the benefits in terms of growth and employment currently; and (2) the costs of postponing the adjustment such as in the exercise by CBO (2011JunLTO, 28-31) in Table 11. It may be easier to analyze the costs and benefits than actual measurement.
An analytical and empirical approach is followed by Blinder and Zandi (2010), using the Moody’s Analytics model of the US economy with four different scenarios: (1) baseline with all policies used; (2) counterfactual including all fiscal stimulus policies but excluding financial stimulus policies; (3) counterfactual including all financial stimulus policies but excluding fiscal stimulus; and (4) a scenario excluding all policies. The scenario excluding all policies is an important reference or the counterfactual of what would have happened if the government had been entirely inactive. A salient feature of the work by Blinder and Zandi (2010) is the consideration of both fiscal and financial policies. There was probably more activity with financial policies than with fiscal policies. Financial policies included the Fed balance sheet, 11 facilities of direct credit to illiquid segments of financial markets, interest rate policy, the Financial Stability Plan including stress tests of banks, the Troubled Asset Relief Program (TARP) and others (see Pelaez and Pelaez, Financial Regulation after the Global Recession (2009b), 157-67; Regulation of Banks and Finance (2009a), 224-7).
Blinder and Zandi (2010, 4) find that:
“In the scenario that excludes all the extraordinary policies, the downturn continues into 2011. Real GDP falls a stunning 7.4% in 2009 and another 3.7% in 2010 (see Table 3). The peak-to-trough decline in GDP is therefore close to 12%, compared to an actual decline of about 4%. By the time employment hits bottom, some 16.6 million jobs are lost in this scenario—about twice as many as actually were lost. The unemployment rate peaks at 16.5%, and although not determined in this analysis, it would not be surprising if the underemployment rate approached one-fourth of the labor force. The federal budget deficit surges to over $2 trillion in fiscal year 2010, $2.6 trillion in fiscal year 2011, and $2.25 trillion in FY 2012. Remember, this is with no policy response. With outright deflation in prices and wages in 2009-2011, this dark scenario constitutes a 1930s-like depression.”
The conclusion by Blinder and Zandi (2010) is that if the US had not taken massive fiscal and financial measures the economy could have suffered far more during a prolonged period. There are still a multitude of questions that cloud understanding of the impact of the recession and what would have happened without massive policy impulses. Some effects are quite difficult to measure. An important argument by Blinder and Zandi (2010) is that this evaluation of counterfactuals is relevant to the need of stimulus if economic conditions worsened again.
(3) Theory and Reality of Cyclical Stagnation Not Secular Stagnation. There is current interest in past theories of “secular stagnation.” Alvin H. Hansen (1939, 4, 7; see Hansen 1938, 1941; for an early critique see Simons 1942) argues:
“Not until the problem of full employment of our productive resources from the long-run, secular standpoint was upon us, were we compelled to give serious consideration to those factors and forces in our economy which tend to make business recoveries weak and anaemic (sic) and which tend to prolong and deepen the course of depressions. This is the essence of secular stagnation-sick recoveries which die in their infancy and depressions which feed on themselves and leave a hard and seemingly immovable core of unemployment. Now the rate of population growth must necessarily play an important role in determining the character of the output; in other words, the composition of the flow of final goods. Thus a rapidly growing population will demand a much larger per capita volume of new residential building construction than will a stationary population. A stationary population with its larger proportion of old people may perhaps demand more personal services; and the composition of consumer demand will have an important influence on the quantity of capital required. The demand for housing calls for large capital outlays, while the demand for personal services can be met without making large investment expenditures. It is therefore not unlikely that a shift from a rapidly growing population to a stationary or declining one may so alter the composition of the final flow of consumption goods that the ratio of capital to output as a whole will tend to decline.”
In the analysis of Hansen (1939, 3) of secular stagnation, economic progress consists of growth of real income per person driven by growth of productivity. The “constituent elements” of economic progress are “(a) inventions, (b) the discovery and development of new territory and new resources, and (c) the growth of population” (Hansen 1939, 3). Secular stagnation originates in decline of population growth and discouragement of inventions. According to Hansen (1939, 2), US population grew by 16 million in the 1920s but grew by one half or about 8 million in the 1930s with forecasts at the time of Hansen’s writing in 1938 of growth of around 5.3 million in the 1940s. Hansen (1939, 2) characterized demography in the US as “a drastic decline in the rate of population growth. Hansen’s plea was to adapt economic policy to stagnation of population in ensuring full employment. In the analysis of Hansen (1939, 8), population caused half of the growth of US GDP per year. Growth of output per person in the US and Europe was caused by “changes in techniques and to the exploitation of new natural resources.” In this analysis, population caused 60 percent of the growth of capital formation in the US. Declining population growth would reduce growth of capital formation. Residential construction provided an important share of growth of capital formation. Hansen (1939, 12) argues that market power of imperfect competition discourages innovation with prolonged use of obsolete capital equipment. Trade unions would oppose labor-savings innovations. The combination of stagnating and aging population with reduced innovation caused secular stagnation. Hansen (1939, 12) concludes that there is role for public investments to compensate for lack of dynamism of private investment but with tough tax/debt issues.
Table SE1 provides contributions to growth of GDP in the 1930s. These data were not available until much more recently. Residential investment (RSI) contributed 1.03 percentage points to growth of GDP of 8.0 percent in 1939, which is a high percentage of the contribution of gross private domestic investment of 2.39 percentage points. Residential investment contributed 0.42 percentage points to GDP growth of 8.8 percent in 1940 with gross private domestic investment contributing 3.99 percentage points.
Table SE1, US, Contributions to Growth of GDP
GDP ∆% | PCE PP | GDI PP | NRI PP | RSI PP | Net Trade PP | GOVT | |
1930 | -8.5 | -3.96 | -5.18 | -1.84 | -1.50 | -0.31 | 0.94 |
1931 | -6.4 | -2.37 | -4.28 | -3.32 | -0.40 | -0.22 | 0.48 |
1932 | -12.9 | -7.00 | -5.28 | -2.78 | -1.02 | -0.20 | -0.42 |
1933 | -1.3 | -1.79 | 1.16 | -0.44 | -0.24 | -0.11 | -0.52 |
1934 | 10.8 | 5.71 | 2.83 | 1.31 | 0.38 | 0.33 | 1.91 |
1935 | 8.9 | 4.69 | 4.54 | 1.41 | 0.56 | -0.83 | 0.50 |
1936 | 12.9 | 7.68 | 2.58 | 2.10 | 0.47 | 0.24 | 2.44 |
1937 | 5.1 | 2.72 | 2.57 | 1.42 | 0.17 | 0.45 | -0.64 |
1938 | -3.3 | -1.15 | -4.13 | -2.13 | 0.01 | 0.88 | 1.09 |
1939 | 8.0 | 4.11 | 2.39 | 0.71 | 1.03 | 0.07 | 1.41 |
1940 | 8.8 | 3.72 | 3.99 | 1.60 | 0.42 | 0.52 | 0.57 |
GDP ∆%: Annual Growth of GDP; PCE PP: Percentage Points Contributed by Personal Consumption Expenditures (PCE); GDI PP: Percentage Points Contributed by Gross Private Domestic Investment (GDI); NRI PP: Percentage Points Contributed by Nonresidential Investment (NRI); RSI: Percentage Points Contributed by Residential Investment; Net Trade PP: Percentage Points Contributed by Net Exports less Imports of Goods and Services; GOVT PP: Percentage Points Contributed by Government Consumption and Gross Investment
Source: Bureau of Economic Analysis
http://www.bea.gov/iTable/index_nipa.cfm
Table ES2 provides percentage shares of GDP in 1929, 1939, 1940, 2006 and 2013. The share of residential investment was 3.9 percent in 1929, 3.4 percent in 1939 and 6.0 percent in 2006 at the peak of the real estate boom. The share of residential investment in GDP has not been very high historically.
Table ES2, Percentage Shares in GDP
1929 | 1939 | 1940 | 2006 | 2013 | |
GDP | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
PCE | 74.0 | 71.9 | 69.2 | 67.1 | 68.5 |
GDI | 16.4 | 10.9 | 14.2 | 19.3 | 15.9 |
NRI | 11.1 | 7.3 | 8.3 | 12.8 | 12.2 |
RSI | 3.9 | 3.4 | 3.5 | 6.0 | 3.1 |
Net Trade | 0.4 | 0.9 | 1.4 | -5.5 | -3.0 |
GOVT | 9.2 | 16.3 | 15.2 | 19.1 | 18.6 |
PCE: Personal Consumption Expenditures; GDI: Gross Domestic Investment; NRI: Nonresidential Investment; RSI: Residential Investment; Net Trade: Net Exports less Imports of Goods and Services; GOVT: Government Consumption and Gross Investment
Source: Bureau of Economic Analysis
PCE: Personal Consumption Expenditures; GDI: Gross Private Domestic Investment; NRI: Nonresidential Investment; RSI: Residential Investment; Net Trade: Net Exports less Imports of Goods and Services; GOVT: Government Consumption and Gross Investment
Source: Bureau of Economic Analysis
http://www.bea.gov/iTable/index_nipa.cfm
An interpretation of the New Deal is that fiscal stimulus must be massive in recovering growth and employment and that it should not be withdrawn prematurely to avoid a sharp second contraction as it occurred in 1937 (Christina Romer 2009). Proposals for another higher dose of stimulus explain the current weakness by insufficient fiscal expansion and warn that failure to spend more can cause another contraction as in 1937. According to a different interpretation, private hours worked declined by 25 percent by 1939 compared with the level in 1929, suggesting that the economy fell to a lower path of expansion than in 1929 (works by Harold Cole and Lee Ohanian (1999) (cited in Pelaez and Pelaez, Regulation of Banks and Finance, 215-7). Major real variables of output and employment were below trend by 1939: -26.8 percent for GNP, -25.4 percent for consumption, -51 percent for investment and -25.6 percent for hours worked. Surprisingly, total factor productivity increased by 3.1 percent and real wages by 21.8 percent (Cole and Ohanian 1999). The policies of the Roosevelt administration encouraged increasing unionization to maintain high wages with lower hours worked and high prices by lax enforcement of antitrust law to encourage cartels or collusive agreements among producers. The encouragement by the government of labor bargaining by unions and higher prices by collusion depressed output and employment throughout the 1930s until Roosevelt abandoned the policies during World War II after which the economy recovered full employment (Cole and Ohanian 1999). The fortunate ones who worked during the New Deal received higher real wages at the expense of many who never worked again. In a way, the administration behaved like the father of the unionized workers and the uncle of the collusive rich, neglecting the majority in the middle. Inflation-adjusted GDP increased by 10.8 percent in 1934, 8.9 percent in 1935, 12.9 percent in 1936 but only 5.1 percent in 1937, contracting by -3.3 percent in 1938 (US Bureau of Economic Analysis cited in Pelaez and Pelaez, Financial Regulation after the Global Recession, 151, Globalization and the State, Vol. II, 206). The competing explanation is that the economy did not decline from 1937 to 1938 because of lower government spending in 1937 but rather because of the expansion of unions promoted by the New Deal and increases in tax rates (Thomas Cooley and Lee Ohanian 2010). Government spending adjusted for inflation fell only 0.7 percent in 1936 and 1937 and could not explain the decline of GDP by 3.4 percent in 1938. In 1936, the administration imposed a tax on retained profits not distributed to shareholders according to a sliding scale of 7 percent for retaining 1 percent of total net income up to 27 percent for retaining 70 percent of total net income, increasing costs of investment that were mostly financed in that period with retained earnings (Cooley and Ohanian 2010). The tax rate on dividends jumped from 10.1 percent in 1929 to 15.9 percent in 1932 and doubled by 1936. A recent study finds that “tax rates on dividends rose dramatically during the 1930s and imply significant declines in investment and equity values and nontrivial declines in GDP and hours of work” (Ellen McGrattan 2010), explaining a significant part of the decline of 26 percent in business fixed investment in 1937-1938. The National Labor Relations Act of 1935 caused an increase in union membership from 12 percent in 1934 to 25 percent in 1938. The alternative lesson from the 1930s is that capital income taxes and higher unionization caused increases in business costs that perpetuated job losses of the recession with current risks of repeating the 1930s (Cooley and Ohanian 1999).
In the analysis of Hansen (1939, 3) of secular stagnation, economic progress consists of growth of real income per person driven by growth of productivity. The “constituent elements” of economic progress are “(a) inventions, (b) the discovery and development of new territory and new resources, and (c) the growth of population” (Hansen 1939, 3). Secular stagnation originates in decline of population growth and discouragement of inventions. According to Hansen (1939, 2), US population grew by 16 million in the 1920s but grew by one half or about 8 million in the 1930s with forecasts at the time of Hansen’s writing in 1938 of growth of around 5.3 million in the 1940s. Hansen (1939, 2) characterized demography in the US as “a drastic decline in the rate of population growth. Hansen’s plea was to adapt economic policy to stagnation of population in ensuring full employment. In the analysis of Hansen (1939, 8), population caused half of the growth of US GDP per year. Growth of output per person in the US and Europe was caused by “changes in techniques and to the exploitation of new natural resources.” In this analysis, population caused 60 percent of the growth of capital formation in the US. Declining population growth would reduce growth of capital formation. Residential construction provided an important share of growth of capital formation. Hansen (1939, 12) argues that market power of imperfect competition discourages innovation with prolonged use of obsolete capital equipment. Trade unions would oppose labor-savings innovations. The combination of stagnating and aging population with reduced innovation caused secular stagnation. Hansen (1939, 12) concludes that there is role for public investments to compensate for lack of dynamism of private investment but with tough tax/debt issues.
The current application of Hansen’s (1938, 1939, 1941) proposition argues that secular stagnation occurs because full employment equilibrium can be attained only with negative real interest rates between minus 2 and minus 3 percent. Professor Lawrence H. Summers (2013Nov8) finds that “a set of older ideas that went under the phrase secular stagnation are not profoundly important in understanding Japan’s experience in the 1990s and may not be without relevance to America’s experience today” (emphasis added). Summers (2013Nov8) argues there could be an explanation in “that the short-term real interest rate that was consistent with full employment had fallen to -2% or -3% sometime in the middle of the last decade. Then, even with artificial stimulus to demand coming from all this financial imprudence, you wouldn’t see any excess demand. And even with a relative resumption of normal credit conditions, you’d have a lot of difficulty getting back to full employment.” The US economy could be in a situation where negative real rates of interest with fed funds rates close to zero as determined by the Federal Open Market Committee (FOMC) do not move the economy to full employment or full utilization of productive resources. Summers (2013Oct8) finds need of new thinking on “how we manage an economy in which the zero nominal interest rates is a chronic and systemic inhibitor of economy activity holding our economies back to their potential.”
Former US Treasury Secretary Robert Rubin (2014Jan8) finds three major risks in prolonged unconventional monetary policy of zero interest rates and quantitative easing: (1) incentive of delaying action by political leaders; (2) “financial moral hazard” in inducing excessive exposures pursuing higher yields of risker credit classes; and (3) major risks in exiting unconventional policy. Rubin (2014Jan8) proposes reduction of deficits by structural reforms that could promote recovery by improving confidence of business attained with sound fiscal discipline.
Professor John B. Taylor (2014Jan01, 2014Jan3) provides clear thought on the lack of relevance of Hansen’s contention of secular stagnation to current economic conditions. The application of secular stagnation argues that the economy of the US has attained full-employment equilibrium since around 2000 only with negative real rates of interest of minus 2 to minus 3 percent. At low levels of inflation, the so-called full-employment equilibrium of negative interest rates of minus 2 to minus 3 percent cannot be attained and the economy stagnates. Taylor (2014Jan01) analyzes multiple contradictions with current reality in this application of the theory of secular stagnation:
- Secular stagnation would predict idle capacity, in particular in residential investment when fed fund rates were fixed at 1 percent from Jun 2003 to Jun 2004. Taylor (2014Jan01) finds unemployment at 4.4 percent with house prices jumping 7 percent from 2002 to 2003 and 14 percent from 2004 to 2005 before dropping from 2006 to 2007. GDP prices doubled from 1.7 percent to 3.4 percent when interest rates were low from 2003 to 2005.
- Taylor (2014Jan01, 2014Jan3) finds another contradiction in the application of secular stagnation based on low interest rates because of savings glut and lack of investment opportunities. Taylor (2009) shows that there was no savings glut. The savings rate of the US in the past decade is significantly lower than in the 1980s.
- Taylor (2014Jan01, 2014Jan3) finds another contradiction in the low ratio of investment to GDP currently and reduced investment and hiring by US business firms.
- Taylor (2014Jan01, 2014Jan3) argues that the financial crisis and global recession were caused by weak implementation of existing regulation and departure from rules-based policies.
- Taylor (2014Jan01, 2014Jan3) argues that the recovery from the global recession was constrained by a change in the regime of regulation and fiscal/monetary policies.
In revealing research, Edward P. Lazear and James R. Spletzer (2012JHJul22) use the wealth of data in the valuable database and resources of the Bureau of Labor Statistics (http://www.bls.gov/data/) in providing clear thought on the nature of the current labor market of the United States. The critical issue of analysis and policy currently is whether unemployment is structural or cyclical. Structural unemployment could occur because of (1) industrial and demographic shifts and (2) mismatches of skills and job vacancies in industries and locations. Consider the aggregate unemployment rate, Y, expressed in terms of share si of a demographic group in an industry i and unemployment rate yi of that demographic group (Lazear and Spletzer 2012JHJul22, 5-6):
Y = ∑isiyi (1)
This equation can be decomposed for analysis as (Lazear and Spletzer 2012JHJul22, 6):
∆Y = ∑i∆siy*i + ∑i∆yis*i (2)
The first term in (2) captures changes in the demographic and industrial composition of the economy ∆si multiplied by the average rate of unemployment y*i , or structural factors. The second term in (2) captures changes in the unemployment rate specific to a group, or ∆yi, multiplied by the average share of the group s*i, or cyclical factors. There are also mismatches in skills and locations relative to available job vacancies. A simple observation by Lazear and Spletzer (2012JHJul22) casts intuitive doubt on structural factors: the rate of unemployment jumped from 4.4 percent in the spring of 2007 to 10 percent in October 2009. By nature, structural factors should be permanent or occur over relative long periods. The revealing result of the exhaustive research of Lazear and Spletzer (2012JHJul22) is:
“The analysis in this paper and in others that we review do not provide any compelling evidence that there have been changes in the structure of the labor market that are capable of explaining the pattern of persistently high unemployment rates. The evidence points to primarily cyclic factors.”
Table I-4b and Chart I-12-b provide the US labor force participation rate or percentage of the labor force in population. It is not likely that simple demographic trends caused the sharp decline during the global recession and failure to recover earlier levels. The civilian labor force participation rate dropped from the peak of 66.9 percent in Jul 2006 to 62.6 percent in Dec 2013 and 63.4 percent in Jun 2014. The civilian labor force participation rate was 63.7 percent on an annual basis in 1979 and 63.4 percent in Dec 1980 and Dec 1981, reaching even 62.9 percent in both Apr and May 1979. The civilian labor force participation rate jumped with the recovery to 64.8 percent on an annual basis in 1985 and 65.9 percent in Jul 1985. Structural factors cannot explain these sudden changes vividly shown visually in the final segment of Chart I-12b. Seniors would like to delay their retiring especially because of the adversities of financial repression on their savings. Labor force statistics are capturing the disillusion of potential workers with their chances in finding a job in what Lazear and Spletzer (2012JHJul22) characterize as accentuated cyclical factors. The argument that anemic population growth causes “secular stagnation” in the US (Hansen 1938, 1939, 1941) is as misplaced currently as in the late 1930s (for early dissent see Simons 1942). There is currently population growth in the ages of 16 to 24 years but not enough job creation and discouragement of job searches for all ages (http://cmpassocregulationblog.blogspot.com/2014/06/financialgeopolitical-risks-recovery.html). “Secular stagnation” would be a process over many years and not from one year to another. This is merely another case of theory without reality with dubious policy proposals.
Table I-4b, US, Labor Force Participation Rate, Percent of Labor Force in Population, NSA, 1979-2014
Year | Jan | Feb | Mar | Apr | May | Jun | Oct | Nov | Dec | Annual |
1979 | 62.9 | 63.0 | 63.2 | 62.9 | 62.9 | 64.5 | 64.0 | 63.8 | 63.8 | 63.7 |
1980 | 63.3 | 63.2 | 63.2 | 63.2 | 63.5 | 64.6 | 63.9 | 63.7 | 63.4 | 63.8 |
1981 | 63.2 | 63.2 | 63.5 | 63.6 | 63.9 | 64.6 | 64.0 | 63.8 | 63.4 | 63.9 |
1982 | 63.0 | 63.2 | 63.4 | 63.3 | 63.9 | 64.8 | 64.1 | 64.1 | 63.8 | 64.0 |
1983 | 63.3 | 63.2 | 63.3 | 63.2 | 63.4 | 65.1 | 64.1 | 64.1 | 63.8 | 64.0 |
1984 | 63.3 | 63.4 | 63.6 | 63.7 | 64.3 | 65.5 | 64.6 | 64.4 | 64.3 | 64.4 |
1985 | 64.0 | 64.0 | 64.4 | 64.3 | 64.6 | 65.5 | 65.1 | 64.9 | 64.6 | 64.8 |
1986 | 64.2 | 64.4 | 64.6 | 64.6 | 65.0 | 66.3 | 65.5 | 65.4 | 65.0 | 65.3 |
1987 | 64.7 | 64.8 | 65.0 | 64.9 | 65.6 | 66.3 | 65.9 | 65.7 | 65.5 | 65.6 |
1988 | 65.1 | 65.2 | 65.2 | 65.3 | 65.5 | 66.7 | 66.1 | 66.2 | 65.9 | 65.9 |
1989 | 65.8 | 65.6 | 65.7 | 65.9 | 66.2 | 67.4 | 66.6 | 66.7 | 66.3 | 66.5 |
1990 | 66.0 | 66.0 | 66.2 | 66.1 | 66.5 | 67.4 | 66.5 | 66.3 | 66.1 | 66.5 |
1991 | 65.5 | 65.7 | 65.9 | 66.0 | 66.0 | 67.2 | 66.1 | 66.0 | 65.8 | 66.2 |
1992 | 65.7 | 65.8 | 66.0 | 66.0 | 66.4 | 67.6 | 66.2 | 66.2 | 66.1 | 66.4 |
1993 | 65.6 | 65.8 | 65.8 | 65.6 | 66.3 | 67.3 | 66.4 | 66.3 | 66.2 | 66.3 |
1994 | 66.0 | 66.2 | 66.1 | 66.0 | 66.5 | 67.2 | 66.8 | 66.7 | 66.5 | 66.6 |
1995 | 66.1 | 66.2 | 66.4 | 66.4 | 66.4 | 67.2 | 66.7 | 66.5 | 66.2 | 66.6 |
1996 | 65.8 | 66.1 | 66.4 | 66.2 | 66.7 | 67.4 | 67.1 | 67.0 | 66.7 | 66.8 |
1997 | 66.4 | 66.5 | 66.9 | 66.7 | 67.0 | 67.8 | 67.1 | 67.1 | 67.0 | 67.1 |
1998 | 66.6 | 66.7 | 67.0 | 66.6 | 67.0 | 67.7 | 67.1 | 67.1 | 67.0 | 67.1 |
1999 | 66.7 | 66.8 | 66.9 | 66.7 | 67.0 | 67.7 | 67.0 | 67.0 | 67.0 | 67.1 |
2000 | 66.8 | 67.0 | 67.1 | 67.0 | 67.0 | 67.7 | 66.9 | 66.9 | 67.0 | 67.1 |
2001 | 66.8 | 66.8 | 67.0 | 66.7 | 66.6 | 67.2 | 66.7 | 66.6 | 66.6 | 66.8 |
2002 | 66.2 | 66.6 | 66.6 | 66.4 | 66.5 | 67.1 | 66.6 | 66.3 | 66.2 | 66.6 |
2003 | 66.1 | 66.2 | 66.2 | 66.2 | 66.2 | 67.0 | 66.1 | 66.1 | 65.8 | 66.2 |
2004 | 65.7 | 65.7 | 65.8 | 65.7 | 65.8 | 66.5 | 66.0 | 66.1 | 65.8 | 66.0 |
2005 | 65.4 | 65.6 | 65.6 | 65.8 | 66.0 | 66.5 | 66.2 | 66.1 | 65.9 | 66.0 |
2006 | 65.5 | 65.7 | 65.8 | 65.8 | 66.0 | 66.7 | 66.4 | 66.4 | 66.3 | 66.2 |
2007 | 65.9 | 65.8 | 65.9 | 65.7 | 65.8 | 66.6 | 66.0 | 66.1 | 65.9 | 66.0 |
2008 | 65.7 | 65.5 | 65.7 | 65.7 | 66.0 | 66.6 | 66.1 | 65.8 | 65.7 | 66.0 |
2009 | 65.4 | 65.5 | 65.4 | 65.4 | 65.5 | 66.2 | 64.9 | 64.9 | 64.4 | 65.4 |
2010 | 64.6 | 64.6 | 64.8 | 64.9 | 64.8 | 65.1 | 64.4 | 64.4 | 64.1 | 64.7 |
2011 | 63.9 | 63.9 | 64.0 | 63.9 | 64.1 | 64.5 | 64.1 | 63.9 | 63.8 | 64.1 |
2012 | 63.4 | 63.6 | 63.6 | 63.4 | 63.8 | 64.3 | 63.8 | 63.5 | 63.4 | 63.7 |
2013 | 63.3 | 63.2 | 63.1 | 63.1 | 63.5 | 64.0 | 62.9 | 62.9 | 62.6 | 63.2 |
2014 | 62.5 | 62.7 | 62.9 | 62.6 | 62.9 | 63.4 |
Source: US Bureau of Labor Statistics
Chart I-12b, US, Labor Force Participation Rate, Percent of Labor Force in Population, NSA, 1979-2014
Source: Bureau of Labor Statistics
Broader perspective is provided by Chart I-12c of the US Bureau of Labor Statistics. The United States civilian noninstitutional population has increased along a consistent trend since 1948 that continued through earlier recessions and the global recession from IVQ2007 to IIQ2009 and the cyclical expansion after IIIQ2009.
Chart I-12c, US, Civilian Noninstitutional Population, Thousands, NSA, 1948-2014
Sources: US Bureau of Labor Statistics
The labor force of the United States in Chart I-12d has increased along a trend similar to that of the civilian noninstitutional population in Chart I-12c. There is an evident stagnation of the civilian labor force in the final segment of Chart I-12d during the current economic cycle. This stagnation is explained by cyclical factors similar to those analyzed by Lazear and Spletzer (2012JHJul22) that motivated an increasing population to drop out of the labor force instead of structural factors. Large segments of the potential labor force are not observed, constituting unobserved unemployment and of more permanent nature because those afflicted have been seriously discouraged from working by the lack of opportunities.
Chart I-12d, US, Labor Force, Thousands, NSA, 1948-2014
Sources: US Bureau of Labor Statistics
The rate of labor force participation of the US is in Chart I-12E from 1948 to 2014. There is sudden decline during the global recession after 2007 without recovery explained by cyclic factors (Lazear and Spletzer 2012JHJul22) as many potential workers stopped their job searches disillusioned that there could be an opportunity for them in sharply contracted labor markets.
Chart I-12E, US, Labor Force Participation Rate, Percent of Labor Force in Population, NSA, 1948-2014
Sources: US Bureau of Labor Statistics
Table EMP provides the comparison between the labor market in the current whole cycle from 2007 to 2013 and the whole cycle from 1979 to 1986. In the entire cycle from 2007 to 2013, the number employed fell 2.118 million, full-time employed fell 4.777 million, part-time for economic reasons increased 3.534 and population increased 13.812 million. The number employed fell 1.5 percent, full-time employed fell 3.9 percent, part-time for economic reasons increased 80.3 percent and population increased 6.0 percent. There is sharp contrast with the contractions of the 1980s and with most economic history of the United States. In the whole cycle from 1979 to 1986, the number employed increased 10.773 million, full-time employed increased 7.875 million, part-time for economic reasons 2.011 million and population 15.724 million. In the entire cycle from 1979 to 1986, the number employed increased 10.9 percent, full-time employed 9.5 percent, part-time for economic reasons 56.2 percent and population 9.5 million. The difference between the 1980s and the current cycle after 2007 is in the high rate of growth after the contraction that maintained trend growth around 3.0 percent for the entire cycle and per capital growth at 2.0 percent. The evident fact is that current weakness in labor markets originates in cyclical slow growth and not in imaginary secular stagnation.
Table EMP, US, Annual Level of Employed, Full-Time Employed, Employed Part-Time for Economic Reasons and Noninstitutional Civilian Population, Millions
Employed | Full-Time Employed | Part Time Economic Reasons | Noninstitutional Civilian Population | |
2000s | ||||
2000 | 136.891 | 113.846 | 3.227 | 212.577 |
2001 | 136.933 | 113.573 | 3.715 | 215.092 |
2002 | 136.485 | 112.700 | 4.213 | 217.570 |
2003 | 137.736 | 113.324 | 4.701 | 221.168 |
2004 | 139.252 | 114.518 | 4.567 | 223.357 |
2005 | 141.730 | 117.016 | 4.350 | 226.082 |
2006 | 144.427 | 119.688 | 4.162 | 228.815 |
2007 | 146.047 | 121.091 | 4.401 | 231.867 |
2008 | 145.362 | 120.030 | 5.875 | 233.788 |
2009 | 139.877 | 112.634 | 8.913 | 235.801 |
2010 | 139.064 | 111.714 | 8.874 | 237.830 |
2011 | 139.869 | 112.556 | 8.560 | 239.618 |
2012 | 142.469 | 114.809 | 8.122 | 243.284 |
2013 | 143.929 | 116.314 | 7.935 | 245.679 |
∆2007-2013 | -2.118 | -4.777 | 3.534 | 13.812 |
∆% 2007-2013 | -1.5 | -3.9 | 80.3 | 6.0 |
1980s | ||||
1979 | 98.824 | 82.654 | 3.577 | 164.863 |
1980 | 99.303 | 82.562 | 4.321 | 167.745 |
1981 | 100.397 | 83.243 | 4.768 | 170.130 |
1982 | 99.526 | 81.421 | 6.170 | 172.271 |
1983 | 100.834 | 82.322 | 6.266 | 174.215 |
1984 | 105.005 | 86.544 | 5.744 | 176.383 |
1985 | 107.150 | 88.534 | 5.590 | 178.206 |
1986 | 109.597 | 90.529 | 5.588 | 180.587 |
1987 | 112.440 | 92.957 | 5.401 | 182.753 |
1988 | 114.968 | 95.214 | 5.206 | 184.613 |
1989 | 117.342 | 97.369 | 4.894 | 186.393 |
∆1979-1986 | 10.773 | 7.875 | 2.011 | 15.724 |
∆% 1979-86 | 10.9 | 9.5 | 56.2 | 9.5 |
Source: Bureau of Labor Statistics
There is current interest in past theories of “secular stagnation.” Alvin H. Hansen (1939, 4, 7; see Hansen 1938, 1941; for an early critique see Simons 1942) argues:
“Not until the problem of full employment of our productive resources from the long-run, secular standpoint was upon us, were we compelled to give serious consideration to those factors and forces in our economy which tend to make business recoveries weak and anaemic (sic) and which tend to prolong and deepen the course of depressions. This is the essence of secular stagnation-sick recoveries which die in their infancy and depressions which feed on them-selves and leave a hard and seemingly immovable core of unemployment. Now the rate of population growth must necessarily play an important role in determining the character of the output; in other words, the com-position of the flow of final goods. Thus a rapidly growing population will demand a much larger per capita volume of new residential building construction than will a stationary population. A stationary population with its larger proportion of old people may perhaps demand more personal services; and the composition of consumer demand will have an important influence on the quantity of capital required. The demand for housing calls for large capital outlays, while the demand for personal services can be met without making large investment expenditures. It is therefore not unlikely that a shift from a rapidly growing population to a stationary or declining one may so alter the composition of the final flow of consumption goods that the ratio of capital to output as a whole will tend to decline.”
The argument that anemic population growth causes “secular stagnation” in the US (Hansen 1938, 1939, 1941) is as misplaced currently as in the late 1930s (for early dissent see Simons 1942). Youth workers would obtain employment at a premium in an economy with declining population. In fact, there is currently population growth in the ages of 16 to 24 years but not enough job creation and discouragement of job searches for all ages. This is merely another case of theory without reality with dubious policy proposals. Inferior performance of the US economy and labor markets is the critical current issue of analysis and policy design.
In revealing research, Edward P. Lazear and James R. Spletzer (2012JHJul22) use the wealth of data in the valuable database and resources of the Bureau of Labor Statistics (http://www.bls.gov/data/) in providing clear thought on the nature of the current labor market of the United States. The critical issue of analysis and policy currently is whether unemployment is structural or cyclical. Structural unemployment could occur because of (1) industrial and demographic shifts and (2) mismatches of skills and job vacancies in industries and locations. Consider the aggregate unemployment rate, Y, expressed in terms of share si of a demographic group in an industry i and unemployment rate yi of that demographic group (Lazear and Spletzer 2012JHJul22, 5-6):
Y = ∑isiyi (1)
This equation can be decomposed for analysis as (Lazear and Spletzer 2012JHJul22, 6):
∆Y = ∑i∆siy*i + ∑i∆yis*i (2)
The first term in (2) captures changes in the demographic and industrial composition of the economy ∆si multiplied by the average rate of unemployment y*i , or structural factors. The second term in (2) captures changes in the unemployment rate specific to a group, or ∆yi, multiplied by the average share of the group s*i, or cyclical factors. There are also mismatches in skills and locations relative to available job vacancies. A simple observation by Lazear and Spletzer (2012JHJul22) casts intuitive doubt on structural factors: the rate of unemployment jumped from 4.4 percent in the spring of 2007 to 10 percent in October 2009. By nature, structural factors should be permanent or occur over relative long periods. The revealing result of the exhaustive research of Lazear and Spletzer (2012JHJul22) is:
“The analysis in this paper and in others that we review do not provide any compelling evidence that there have been changes in the structure of the labor market that are capable of explaining the pattern of persistently high unemployment rates. The evidence points to primarily cyclic factors.”
The theory of secular stagnation cannot explain sudden collapse of the US economy and labor markets. There are accentuated cyclic factors for both the entire population and the young population of ages 16 to 24 years. Table Summary provides the total noninstitutional population (ICP) of the US, full-time employment level (FTE), employment (EMP), civilian labor force (CLF), civilian labor force participation rate (CLFP), employment/population ratio (EPOP) and unemployment level (UNE). Secular stagnation would not be secular but immediate. All indicators of the labor market weakened sharply during the contraction and did not recover. Population continued to grow but all other variables collapsed and did not recover. The theory of secular stagnation departs from an aggregate production function in which output grows with the use of labor, capital and technology (see Pelaez and Pelaez, Globalization and the State, Vol. I (2008a), 11-6). Hansen (1938, 1939) finds secular stagnation in lower growth of an aging population. In the current US economy, Table Summary shows that population is dynamic while the labor market is fractured. There is key explanation in the behavior of the civilian labor force participation rate (CLFP) and the employment population ratio (EPOP) that collapsed during the global recession with inadequate recovery. Abandoning job searches are difficult to capture in labor statistics but likely explain the decline in the participation of the population in the labor force. Allowing for abandoning job searches, the total number of people unemployed or underemployed is 26.8 million or 16.3 percent of the effective labor force (http://cmpassocregulationblog.blogspot.com/2014/07/financial-valuations-twenty-seven.html).
Table Summary Total, US, Total Noninstitutional Civilian Population, Full-time Employment, Employment, Civilian Labor Force, Civilian Labor Force Participation Rate, Employment Population Ratio, Unemployment, NSA, Millions and Percent
ICP | FTE | EMP | CLF | CLFP | EPOP | UNE | |
2006 | 228.8 | 119.7 | 144.4 | 151.4 | 66.2 | 63.1 | 7.0 |
2009 | 235.8 | 112.6 | 139.9 | 154.1 | 65.4 | 59.3 | 14.3 |
2012 | 243.3 | 114.8 | 142.5 | 155.0 | 63.7 | 58.6 | 12.5 |
2013 | 245.7 | 116.3 | 143.9 | 155.4 | 63.2 | 58.6 | 11.5 |
12/07 | 233.2 | 121.0 | 146.3 | 153.7 | 65.9 | 62.8 | 7.4 |
9/09 | 236.3 | 112.0 | 139.1 | 153.6 | 65.0 | 58.9 | 14.5 |
6/14 | 247.8 | 119.5 | 147.1 | 157.0 | 63.4 | 59.4 | 9.9 |
ICP: Total Noninstitutional Civilian Population; FT: Full-time Employment Level, EMP: Total Employment Level; CLF: Civilian Labor Force; CLFP: Civilian Labor Force Participation Rate; EPOP: Employment Population Ratio; UNE: Unemployment
Source: Bureau of Labor Statistics
The same situation is present in the labor market for young people in ages 16 to 24 years with data in Table Summary Youth. The youth noninstitutional civilian population (ICP) continued to increase during and after the global recession. There is the same disastrous labor market with decline for young people in employment (EMP), civilian labor force (CLF), civilian labor force participation rate (CLFP) and employment population ratio (EPOP). There are only increases for unemployment of young people (UNE) and youth unemployment rate (UNER). If aging were a factor of secular stagnation, growth of population of young people would attract a premium in remuneration in labor markets. The sad fact is that young people are also facing tough labor markets. The application of the theory of secular stagnation to the US economy and labor markets is void of reality in the form of key facts, which are best explained by accentuated cyclic factors analyzed by Lazear and Spletzer (2012JHJul22).
Table Summary Youth, US, Youth, Ages 16 to 24 Years, Noninstitutional Civilian Population, Full-time Employment, Employment, Civilian Labor Force, Civilian Labor Force Participation Rate, Employment Population Ratio, Unemployment, NSA, Millions and Percent
ICP | EMP | CLF | CLFP | EPOP | UNE | UNER | |
2006 | 36.9 | 20.0 | 22.4 | 60.6 | 54.2 | 2.4 | 10.5 |
2009 | 37.6 | 17.6 | 21.4 | 56.9 | 46.9 | 3.8 | 17.6 |
2012 | 38.7 | 17.8 | 21.3 | 54.9 | 46.0 | 3.5 | 16.2 |
2013 | 38.8 | 18.1 | 21.4 | 55.0 | 46.5 | 3.3 | 15.5 |
12/07 | 37.5 | 19.4 | 21.7 | 57.8 | 51.6 | 2.3 | 10.7 |
9/09 | 37.6 | 17.0 | 20.7 | 55.2 | 45.1 | 3.8 | 18.2 |
6/14 | 38.7 | 19.4 | 22.9 | 59.0 | 50.1 | 3.4 | 15.0 |
ICP: Youth Noninstitutional Civilian Population; EMP: Youth Employment Level; CLF: Youth Civilian Labor Force; CLFP: Youth Civilian Labor Force Participation Rate; EPOP: Youth Employment Population Ratio; UNE: Unemployment; UNER: Youth Unemployment Rate
Source: Bureau of Labor Statistics
The United States is experiencing high youth unemployment as in European economies. Table I-10 provides the employment level for ages 16 to 24 years of age estimated by the Bureau of Labor Statistics. On an annual basis, youth employment fell from 20.041 million in 2006 to 17.362 million in 2011 or 2.679 million fewer youth jobs and to 17.834 million in 2012 or 2.207 million fewer jobs. Youth employment fell from 20.041 million in 2006 to 18.057 million in 2013 or 1.984 million fewer jobs. During the seasonal peak months of youth employment in the summer from Jun to Aug, youth employment has fallen by more than two million jobs relative to 21.914 million in Jul 2006 with 19.684 million in Jul 2013 for 2.230 million fewer youth jobs. The number of jobs ages 16 to 24 years fell from 21.167 million in Aug 2006 to 18.636 million in Aug 2013 or by 2.531 million. The number of youth jobs fell from 19.604 million in Sep 2006 to 18.043 million in Sep 2013 or 1.561 million fewer youth jobs. The number of youth jobs fell from 20.129 million in Dec 2006 to 18.106 million in Dec 2013 or 2.023 million fewer jobs. The number of youth jobs fell from 21.268 million in Jun 2006 million to 19.421 million in Jun 2014 or 1.847 million fewer youth jobs. The civilian noninstitutional population ages 16 to 24 years increased from 37.443 million in Jul 2007 to 38.861 million in Jul 2013 or by 1.418 million while the number of jobs for ages 16 to 24 years fell by 2.230 million from 21.914 million in Jul 2006 to 19.684 million in Jul 2013. The civilian noninstitutional population for ages 16 to 24 years increased from 37.455 million in Aug 2007 to 38.841 million in Aug 2013 or by 1.386 million while the number of youth jobs fell by 1.777 million. The civilian noninstitutional population increased from 37.467 million in Sep 2007 to 38.822 million in Sep 2013 or by 1.355 million while the number of youth jobs fell by 1.455 million. The civilian noninstitutional population increased from 37.480 million in Oct 2007 to 38.804 million in Oct 2013 or by 1.324 million while the number of youth jobs decreased 1.877 million from Oct 2006 to Oct 2013. The civilian noninstitutional population increased from 37.076 million in Nov 2006 to 38.798 million in Nov 2013 or by 1.722 million while the number of youth jobs fell 1.799 million. The civilian noninstitutional population increased from 37.518 million in Dec 2007 to 38.790 million in Dec 2013 or by 1.272 million while the number of youth jobs fell 2.023 million from Dec 2006 to Dec 2013. The youth civilian noninstitutional population increased 1.488 million from 37.282 million in in Jan 2007 to 38.770 million in Jan 2014 while the number of youth jobs fell 2.035 million. The youth civilian noninstitutional population increased 1.464 million from 37.302 in Feb 2007 to 38.766 million in Feb 2014 while the number of youth jobs decreased 2.058 million. The civilian noninstitutional population increased 1.437 million from 37.324 million in Mar 2007 to 38.761 million in Mar 2014 while jobs for ages 16 to 24 years decreased 1.599 million from 19.538 million in Mar 2007 to 17.939 million in Mar 2014. The civilian noninstitutional population ages 16 to 24 years increased 1.410 million from 37.349 million in Apr 2007 to 38.759 million in Apr 2014 while the number of youth jobs fell 1.347 million. The civilian noninstitutional population increased 1.370 million from 37.379 million in May 2007 to 38.749 million in May 2014 while the number of youth jobs decreased 1.128 million. The civilian noninstitutional population increased 1.330 million from 37.410 million in Jun 2007 to 38.740 million in Jun 2014 while the number of youth jobs fell 1.847 million from 21.268 million in Jun 2006 to 19.421 million in Jun 2014. The hardship does not originate in low growth of population but in underperformance of the economy in the expansion from the business cycle. There are two hardships behind these data. First, young people cannot find employment after finishing high school and college, reducing prospects for achievement in older age. Second, students with more modest means cannot find employment to keep them in college.
Table I-10, US, Employment Level 16-24 Years, Thousands, NSA
Year | Jan | Feb | Mar | Apr | May | Jun | Nov | Dec |
2001 | 19678 | 19745 | 19800 | 19778 | 19648 | 21212 | 19675 | 19547 |
2002 | 18653 | 19074 | 19091 | 19108 | 19484 | 20828 | 19397 | 19394 |
2003 | 18811 | 18880 | 18709 | 18873 | 19032 | 20432 | 19163 | 19136 |
2004 | 18852 | 18841 | 18752 | 19184 | 19237 | 20587 | 19615 | 19619 |
2005 | 18858 | 18670 | 18989 | 19071 | 19356 | 20949 | 19750 | 19733 |
2006 | 19003 | 19182 | 19291 | 19406 | 19769 | 21268 | 19903 | 20129 |
2007 | 19407 | 19415 | 19538 | 19368 | 19457 | 21098 | 19660 | 19361 |
2008 | 18724 | 18546 | 18745 | 19161 | 19254 | 20466 | 18454 | 18378 |
2009 | 17467 | 17606 | 17564 | 17739 | 17588 | 18726 | 16689 | 16615 |
2010 | 16166 | 16412 | 16587 | 16764 | 17039 | 17920 | 16946 | 16727 |
2011 | 16512 | 16638 | 16898 | 16970 | 17045 | 18180 | 17402 | 17234 |
2012 | 16944 | 17150 | 17301 | 17387 | 17681 | 18907 | 17877 | 17604 |
2013 | 17183 | 17257 | 17271 | 17593 | 17704 | 19125 | 18104 | 18106 |
2014 | 17372 | 17357 | 17939 | 18021 | 18329 | 19421 |
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
Chart I-21 provides US employment level ages 16 to 24 years from 2002 to 2014. Employment level is sharply lower in Jun 2014 relative to the peak in 2007. The following Chart I-21A relates youth employment and youth civilian noninstitutional population.
Chart I-21, US, Employment Level 16-24 Years, Thousands SA, 2001-2014
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
Chart I-21A provides the US civilian noninstitutional population ages 16 to 24 years not seasonally adjusted from 2001 to 2014. The civilian noninstitutional population ages 16 to 24 years increased from 37.443 million in Jul 2007 to 38.861 million in Jul 2013 or by 1.418 million while the number of jobs for ages 16 to 24 years fell by 2.230 million from 21.914 million in Jul 2006 to 19.684 million in Jul 2013. The civilian noninstitutional population for ages 16 to 24 years increased from 37.455 million in Aug 2007 to 38.841 million in Aug 2013 or by 1.386 million while the number of youth jobs fell by 1.777 million. The civilian noninstitutional population increased from 37.467 million in Sep 2007 to 38.822 million in Sep 2013 or by 1.355 million while the number of youth jobs fell by 1.455 million. The civilian noninstitutional population increased from 37.480 million in Oct 2007 to 38.804 million in Oct 2013 or by 1.324 million while the number of youth jobs decreased 1.877 million from Oct 2006 to Oct 2013. The civilian noninstitutional population increased from 37.076 million in Nov 2006 to 38.798 million in Nov 2013 or by 1.722 million while the number of youth jobs fell 1.799 million. The civilian noninstitutional population increased from 37.518 million in Dec 2007 to 38.790 million in Dec 2013 or by 1.272 million while the number of youth jobs fell 2.023 million from Dec 2006 to Dec 2013. The youth civilian noninstitutional population increased 1.488 million from 37.282 million in in Jan 2007 to 38.770 million in Jan 2014 while the number of youth jobs fell 2.035 million. The youth civilian noninstitutional population increased 1.464 million from 37.302 in Feb 2007 to 38.766 million in Feb 2014 while the number of youth jobs decreased 2.058 million. The civilian noninstitutional population increased 1.437 million from 37.324 million in Mar 2007 to 38.761 million in Mar 2014 while jobs for ages 16 to 24 years decreased 1.599 million from 19.538 million in Mar 2007 to 17.939 million in Mar 2014. The civilian noninstitutional population ages 16 to 24 years increased 1.410 million from 37.349 million in Apr 2007 to 38.759 million in Apr 2014 while the number of youth jobs fell 1.347 million. The civilian noninstitutional population increased 1.370 million from 37.379 million in May 2007 to 38.749 million in May 2014 while the number of youth jobs decreased 1.128 million. The civilian noninstitutional population increased 1.330 million from 37.410 million in Jun 2007 to 38.740 million in Jun 2014 while the number of youth jobs fell 1.847 million from 21.268 million in Jun 2006 to 19.421 million in Jun 2014. The hardship does not originate in low growth of population but in underperformance of the economy in the expansion from the business cycle. There are two hardships behind these data. First, young people cannot find employment after finishing high school and college, reducing prospects for achievement in older age. Second, students with more modest means cannot find employment to keep them in college.
Chart I-21A, US, Civilian Noninstitutional Population Ages 16 to 24 Years, Thousands NSA, 2001-2014
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
Chart I-21B provides the civilian labor force of the US ages 16 to 24 years NSA from 2001 to 2014. The US civilian labor force ages 16 to 24 years fell from 24.339 million in Jul 2007 to 23.506 million in Jul 2013, by 0.833 million or decline of 3.4 percent, while the civilian noninstitutional population NSA increased from 37.443 million in Jul 2007 to 38.861 million in Jul 2013, by 1.418 million or 3.8 percent. The US civilian labor force ages 16 to 24 fell from 22.801 million in Aug 2007 to 22.089 million in Aug 2013, by 0.712 million or 3.1 percent, while the noninstitutional population for ages 16 to 24 years increased from 37.455 million in Aug 2007 to 38.841 million in Aug 2013, by 1.386 million or 3.7 percent. The US civilian labor force ages 16 to 24 years fell from 21.917 million in Sep 2007 to 21.183 million in Sep 2013, by 0.734 million or 3.3 percent while the civilian noninstitutional youth population increased from 37.467 million in Sep 2007 to 38.822 million in Sep 2013 by 1.355 million or 3.6 percent. The US civilian labor force fell from 21.821 million in Oct 2007 to 21.003 million in Oct 2013, by 0.818 million or 3.7 percent while the noninstitutional youth population increased from 37.480 million in Oct 2007 to 38.804 million in Oct 2013, by 1.324 million or 3.5 percent. The US youth civilian labor force fell from 21.909 million in Nov 2007 to 20.825 million in Nov 2013, by 1.084 million or 4.9 percent while the civilian noninstitutional youth population increased from 37.076 million in Nov 2006 to 38.798 million in Nov 2013 or by 1.722 million. The US youth civilian labor force fell from 21.684 million in Dec 2007 to 20.642 million in Dec 2013, by 1.042 million or 4.8 percent, while the civilian noninstitutional population increased from 37.518 million in Dec 2007 to 38.790 million in Dec 2013, by 1.272 million or 3.4 percent. The youth civilian labor force of the US fell from 21.770 million in Jan 2007 to 20.423 million in Jan 2014, by 1.347 million or 6.2 percent while the youth civilian noninstitutional population increased 37.282 million in Jan 2007 to 38.770 million in Jan 2014, by 1.488 million or 4.0 percent. The youth civilian labor force of the US fell 1.255 million from 21.645 million in Feb 2007 to 20.390 million in Feb 2014 while the youth civilian noninstitutional population increased 1.464 million from 37.302 million in Feb 2007 to 38.766 million in Feb 2014. The youth civilian labor force of the US fell 0.693 million from 21.634 million in Mar 2007 to 20.941 million in Mar 2014 or 3.2 person while the youth noninstitutional civilian population 1.437 million from 37.324 million in Mar 2007 to 38.761 million in Mar 2014 or 3.9 percent. The US youth civilian labor force fell 981 thousand from 21.442 million in Apr 2007 to 20.461 million in Apr 2014 while the youth civilian noninstitutional population increased from 37.349 million in Apr 2007 to 38.759 million in Apr 2014 by 1.410 thousand or 3.8 percent. The youth civilian labor force decreased from 21.659 million in May 2007 to 21.160 million in May 2014 by 499 thousand or 2.3 percent while the youth civilian noninstitutional population increased 1.370 million from 37.739 million in May 2007 to 38.749 million in May 2007 or by 2.7 percent. The youth civilian labor force decreased from 24.128 million in Jun 2006 to 22.851 million in Jun 2014 by 1.277 million or 5.3 percent while the civilian noninstitutional population increased from 36.943 million in Jun 2006 to 38.740 million in Jun 2014 by 1.797 or 4.9 percent. Youth in the US abandoned their participation in the labor force because of the frustration that there are no jobs available for them.
Chart I-21B, US, Civilian Labor Force Ages 16 to 24 Years, Thousands NSA, 2001-2014
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
Chart I-21C provides the ratio of labor force to noninstitutional population or labor force participation of ages 16 to 24 years not seasonally adjusted. The US labor force participation rates for ages 16 to 24 years fell from 66.7 in Jul 2006 to 60.5 in Jul 2013 because of the frustration of young people who believe there may not be jobs available for them. The US labor force participation rate of young people fell from 63.9 in Aug 2006 to 56.9 in Aug 2013. The US labor force participation rate of young people fell from 59.1 percent in Sep 2006 to 54.6 percent in Sep 2013. The US labor force participation rate of young people fell from 59.7 percent in Oct 2006 to 54.1 in Oct 2013. The US labor force participation rate of young people fell from 59.7 percent in Nov 2006 to 53.7 percent in Nov 2013. The US labor force participation rate fell from 57.8 in Dec 2007 to 53.2 in Dec 2013. The youth labor force participation rate fell from 58.4 in Jan 2007 to 52.7 in Jan 2014. The US youth labor force participation rate fell from 58.0 percent in Feb 2007 to 52.6 percent in Feb 2013. The labor force participation rate of ages 16 to 24 years fell from 58.0 in Mar 2007 to 54.0 in Mar 2014. The labor force participation rate of ages 16 to 24 years fell from 57.4 in Apr 2007 to 52.8 in Apr 2014. The labor force participation rate of ages 16 to 24 years fell from 57.9 in May 2007 to 54.6 in May 2014. The labor force participation rate of ages 16 to 24 years fell from 65.3 in Jun 2006 to 59.0 in Jun 2014. Many young people abandoned searches for employment, dropping from the labor force.
Chart I-21C, US, Labor Force Participation Rate Ages 16 to 24 Years, NSA, 2001-2014
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
An important measure of the job market is the number of people with jobs relative to population available for work (civilian noninstitutional population) or employment/population ratio. Chart I-21D provides the employment population ratio for ages 16 to 24 years. The US employment/population ratio NSA for ages 16 to 24 years collapsed from 59.2 in Jul 2006 to 50.7 in Jul 2013. The employment population ratio for ages 16 to 24 years dropped from 57.2 in Aug 2006 to 48.0 in Aug 2013. The employment population ratio for ages to 16 to 24 years declined from 52.9 in Sep 2006 to 46.5 in Sep 2013. The employment population ratio for ages 16 to 24 years fell from 53.6 in Oct 2006 to 46.3 in Oct 2013. The employment population ratio for ages 16 to 24 years fell from 53.7 in Nov 2007 to 46.7 in Nov 2013. The US employment population ratio for ages 16 to 24 years fell from 51.6 in Dec 2007 to 46.7 in Dec 2013. The US employment population ratio fell from 52.1 in Jan 2007 to 44.8 in Jan 2014. The US employment population ratio for ages 16 to 24 fell from 52.0 in Jan 2007 to 44.8 in Jan 2014. The US employment population ratio for ages 16 to 24 years fell from 52.3 in Mar 2007 to 46.3 in Mar 2014. The US employment population ratio for ages 16 to 24 years fell from 51.9 in Apr 2007 to 46.5 in Apr 2014. The US employment population ratio for ages 16 to 24 years fell from 52.1 in May 2007 to 47.3 in May 2014. The US employment population ratio for ages 16 to 24 years fell from 57.6 in Jun 2006 to 50.1 in Jun 2014. Chart I-21D shows vertical drop during the global recession without recovery.
Chart I-21D, US, Employment Population Ratio Ages 16 to 24 Years, Thousands NSA, 2001-2014
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
Table I-11 provides US unemployment level ages 16 to 24 years. The number unemployed ages 16 to 24 years increased from 2342 thousand in 2007 to 3634 thousand in 2011 or by 1.292 million and 3451 thousand in 2012 or by 1.109 million. The unemployment level ages 16 to 23 years increased from 2342 in 2007 to 3324 thousand in 2013 or by 0.982 million. The unemployment level ages 16 to 24 years rose from 2.883 million in Jun 2007 to 3.429 million in Jun 2014 or by 0.546 million. This situation may persist for many years.
Table I-11, US, Unemployment Level 16-24 Years, NSA, Thousands
Year | Jan | Feb | Mar | Apr | May | Jun | Nov | Dec | Annual |
2001 | 2250 | 2258 | 2253 | 2095 | 2171 | 2775 | 2470 | 2412 | 2371 |
2002 | 2754 | 2731 | 2822 | 2515 | 2568 | 3167 | 2570 | 2374 | 2683 |
2003 | 2748 | 2740 | 2601 | 2572 | 2838 | 3542 | 2522 | 2248 | 2746 |
2004 | 2767 | 2631 | 2588 | 2387 | 2684 | 3191 | 2448 | 2294 | 2638 |
2005 | 2661 | 2787 | 2520 | 2398 | 2619 | 3010 | 2369 | 2055 | 2521 |
2006 | 2366 | 2433 | 2216 | 2092 | 2254 | 2860 | 2242 | 2007 | 2353 |
2007 | 2363 | 2230 | 2096 | 2074 | 2203 | 2883 | 2250 | 2323 | 2342 |
2008 | 2633 | 2480 | 2347 | 2196 | 2952 | 3450 | 2833 | 2928 | 2830 |
2009 | 3278 | 3457 | 3371 | 3321 | 3851 | 4653 | 3699 | 3532 | 3760 |
2010 | 3983 | 3888 | 3748 | 3803 | 3854 | 4481 | 3561 | 3352 | 3857 |
2011 | 3851 | 3696 | 3520 | 3365 | 3628 | 4248 | 3287 | 3161 | 3634 |
2012 | 3416 | 3507 | 3294 | 3175 | 3438 | 4180 | 3102 | 3153 | 3451 |
2013 | 3674 | 3449 | 3261 | 3129 | 3478 | 4198 | 2721 | 2536 | 3324 |
2014 | 3051 | 3033 | 3002 | 2440 | 2831 | 3429 |
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
Chart I-22 provides the unemployment level for ages 16 to 24 from 2001 to 2014. The level rose sharply from 2007 to 2010 with tepid improvement into 2012 and deterioration into 2013-2014 with recent marginal improvement alternating with deterioration.
Chart I-22, US, Unemployment Level 16-24 Years, Thousands SA, 2001-2014
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
Table I-12 provides the rate of unemployment of young peoples in ages 16 to 24 years. The annual rate jumped from 10.5 percent in 2007 to 18.4 percent in 2010, 17.3 percent in 2011 and 16.2 percent in 2012. The rate of youth unemployment fell marginally to 15.5 percent in 2013. During the seasonal peak in Jul, the rate of youth unemployed was 18.1 percent in Jul 2011, 17.1 percent in Jul 2012 and 16.3 percent in Jul 2013 compared with 10.8 percent in Jul 2007. The rate of youth unemployment rose from 11.2 percent in Jul 2006 to 16.3 percent in Jul 2013 and likely higher if adding those who ceased searching for a job in frustration none may be available. The rate of youth unemployment increased from 9.1 percent in Dec 2006 to 12.3 percent in Dec 2013. The rate of youth unemployment increased from 10.9 percent in Jan 2007 to 14.9 percent in Jan and Feb 2014. The rate of youth unemployment increased from 9.7 percent in Mar 2007 to 14.3 percent in Mar 2014. The rate of youth unemployment increased from 9.7 percent in Apr 2007 to 11.9 percent in Apr 2014. The rate of youth unemployment increased from 10.2 percent in May 2007 to 13.4 percent in May 2014. The rate of youth unemployment increased from 12.0 percent in Jun 2007 to 15.0 percent in Jun 2014. The actual rate is higher because of the difficulty in counting those dropping from the labor force because they believe there are no jobs available for them.
Table I-12, US, Unemployment Rate 16-24 Years, Thousands, NSA
Year | Jan | Feb | Mar | Apr | May | Jun | Nov | Dec | Annual |
2001 | 10.3 | 10.3 | 10.2 | 9.6 | 10.0 | 11.6 | 11.2 | 11.0 | 10.6 |
2002 | 12.9 | 12.5 | 12.9 | 11.6 | 11.6 | 13.2 | 11.7 | 10.9 | 12.0 |
2003 | 12.7 | 12.7 | 12.2 | 12.0 | 13.0 | 14.8 | 11.6 | 10.5 | 12.4 |
2004 | 12.8 | 12.3 | 12.1 | 11.1 | 12.2 | 13.4 | 11.1 | 10.5 | 11.8 |
2005 | 12.4 | 13.0 | 11.7 | 11.2 | 11.9 | 12.6 | 10.7 | 9.4 | 11.3 |
2006 | 11.1 | 11.3 | 10.3 | 9.7 | 10.2 | 11.9 | 10.1 | 9.1 | 10.5 |
2007 | 10.9 | 10.3 | 9.7 | 9.7 | 10.2 | 12.0 | 10.3 | 10.7 | 10.5 |
2008 | 12.3 | 11.8 | 11.1 | 10.3 | 13.3 | 14.4 | 13.3 | 13.7 | 12.8 |
2009 | 15.8 | 16.4 | 16.1 | 15.8 | 18.0 | 19.9 | 18.1 | 17.5 | 17.6 |
2010 | 19.8 | 19.2 | 18.4 | 18.5 | 18.4 | 20.0 | 17.4 | 16.7 | 18.4 |
2011 | 18.9 | 18.2 | 17.2 | 16.5 | 17.5 | 18.9 | 15.9 | 15.5 | 17.3 |
2012 | 16.8 | 17.0 | 16.0 | 15.4 | 16.3 | 18.1 | 14.8 | 15.2 | 16.2 |
2013 | 17.6 | 16.7 | 15.9 | 15.1 | 16.4 | 18.0 | 13.1 | 12.3 | 15.5 |
2014 | 14.9 | 14.9 | 14.3 | 11.9 | 13.4 | 15.0 |
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
Chart I-23 provides the BLS estimate of the not-seasonally-adjusted rate of youth unemployment for ages 16 to 24 years from 2001 to 2014. The rate of youth unemployment increased sharply during the global recession of 2008 and 2009 but has failed to drop to earlier lower levels because of low growth of GDP. Long-term economic performance in the United States consisted of trend growth of GDP at 3 percent per year and of per capita GDP at 2 percent per year as measured for 1870 to 2010 by Robert E. Lucas (2011May). The economy returned to trend growth after adverse events such as wars and recessions. The key characteristic of adversities such as recessions was much higher rates of growth in expansion periods that permitted the economy to recover output, income and employment losses that occurred during the contractions. Over the business cycle, the economy compensated the losses of contractions with higher growth in expansions to maintain trend growth of GDP of 3 percent and of GDP per capita of 2 percent.
Chart I-23, US, Unemployment Rate 16-24 Years, Percent, NSA, 2001-2014
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
Chart I-24 provides longer perspective with the rate of youth unemployment in ages 16 to 24 years from 1948 to 2014. The rate of youth unemployment rose to 20 percent during the contractions of the early 1980s and also during the contraction of the global recession in 2008 and 2009. The data illustrate again the argument in this blog that the contractions of the early 1980s are the valid framework for comparison with the global recession of 2008 and 2009 instead of misleading comparisons with the 1930s. During the initial phase of recovery, the rate of youth unemployment 16 to 24 years NSA fell from 18.9 percent in Jun 1983 to 14.5 percent in Jun 1984. In contrast, the rate of youth unemployment 16 to 24 years was nearly the same during the expansion after IIIQ2009: 17.5 percent in Dec 2009, 16.7 percent in Dec 2010, 15.5 percent in Dec 2011, 15.2 percent in Dec 2012, 17.6 percent in Jan 2013, 16.7 percent in Feb 2013, 15.9 percent in Mar 2013, 15.1 percent in Apr 2013. The rate of youth unemployment was 16.4 percent in May 2013, 18.0 percent in Jun 2013, 16.3 percent in Jul 2013 and 15.6 percent in Aug 2013. In Sep 2006, the rate of youth unemployment was 10.5 percent, increasing to 14.8 percent in Sep 2013. The rate of youth unemployment was 10.3 in Oct 2007, increasing to 14.4 percent in Oct 2013. The rate of youth unemployment was 10.3 percent in Nov 2007, increasing to 13.1 percent in Nov 2013. The rate of youth unemployment was 10.7 percent in Dec 2013, increasing to 12.3 percent in Dec 2013. The rate of youth unemployment was 10.9 percent in Jan 2007, increasing to 14.9 percent in Jan 2014. The rate of youth unemployment was 10.3 percent in Feb 2007, increasing to 14.9 percent in Feb 2014. The rate of youth unemployment was 9.7 percent in Mar 2007, increasing to 14.3 percent in Mar 2014. The rate of youth unemployment was 9.7 percent in Apr 2007, increasing to 11.9 percent in Apr 2014. The rate of youth unemployment was 10.2 percent in May 2007, increasing to 13.4 percent in May 2014. The rate of youth unemployment was 12.0 percent in Jun 2007, increasing to 15.0 percent in Jun 2014. The difference originates in the vigorous seasonally-adjusted annual equivalent average rate of GDP growth of 5.9 percent during the recovery from IQ1983 to IVQ1985 and 4.9 percent from IQ1983 to IIIQ1987 compared with 2.1 percent on average during the first nineteen quarters of expansion from IIIQ2009 to IQ2014 (http://cmpassocregulationblog.blogspot.com/2014/06/financial-indecision-mediocre-cyclical.html). US economic growth has been at only 2.1 percent on average in the cyclical expansion in the 19 quarters from IIIQ2009 to IQ2014. Boskin (2010Sep) measures that the US economy grew at 6.2 percent in the first four quarters and 4.5 percent in the first 12 quarters after the trough in the second quarter of 1975; and at 7.7 percent in the first four quarters and 5.8 percent in the first 12 quarters after the trough in the first quarter of 1983 (Professor Michael J. Boskin, Summer of Discontent, Wall Street Journal, Sep 2, 2010 http://professional.wsj.com/article/SB10001424052748703882304575465462926649950.html). There are new calculations using the revision of US GDP and personal income data since 1929 by the Bureau of Economic Analysis (BEA) (http://bea.gov/iTable/index_nipa.cfm) and the third estimate of GDP for IQ2014 (http://www.bea.gov/newsreleases/national/gdp/2014/pdf/gdp1q14_3rd.pdf). The average of 7.7 percent in the first four quarters of major cyclical expansions is in contrast with the rate of growth in the first four quarters of the expansion from IIIQ2009 to IIQ2010 of only 2.7 percent obtained by dividing GDP of $14,738.0 billion in IIQ2010 by GDP of $14,356.9 billion in IIQ2009 {[$14,738.0/$14,356.9 -1]100 = 2.7%], or accumulating the quarter on quarter growth rates (http://cmpassocregulationblog.blogspot.com/2014/06/financial-indecision-mediocre-cyclical.html and earlier http://cmpassocregulationblog.blogspot.com/2014/05/financial-volatility-mediocre-cyclical.html). The expansion from IQ1983 to IVQ1985 was at the average annual growth rate of 5.9 percent, 5.4 percent from IQ1983 to IIIQ1986, 5.2 percent from IQ1983 to IVQ1986, 5.0 percent from IQ1983 to IQ1987, 5.0 percent from IQ1983 to IIQ1987, 4.9 percent from IQ1983 to IIIQ1987 and at 7.8 percent from IQ1983 to IVQ1983 (http://cmpassocregulationblog.blogspot.com/2014/06/financial-indecision-mediocre-cyclical.html and earlier http://cmpassocregulationblog.blogspot.com/2014/06/financial-instability-mediocre-cyclical.html). The US maintained growth at 3.0 percent on average over entire cycles with expansions at higher rates compensating for contractions. Growth at trend in the entire cycle from IVQ2007 to IQ2014 would have accumulated to 21.2 percent. GDP in IQ2014 would be $18,172.7 billion (in constant dollars of 2009) if the US had grown at trend, which is higher by $2,348.5 billion than actual $15,824.2 billion. There are about two trillion dollars of GDP less than at trend, explaining the 26.8 million unemployed or underemployed equivalent to actual unemployment of 16.3 percent of the effective labor force (http://cmpassocregulationblog.blogspot.com/2014/07/financial-valuations-twenty-seven.html and earlier http://cmpassocregulationblog.blogspot.com/2014/06/financial-risks-rules-discretionary.html). US GDP in IQ2014 is 12.9 percent lower than at trend. US GDP grew from $14,996.1 billion in IVQ2007 in constant dollars to $15,842.2 billion in IQ2014 or 5.5 percent at the average annual equivalent rate of 0.8 percent. Cochrane (2014Jul2) estimates US GDP at more than 10 percent below trend. The US missed the opportunity to grow at higher rates during the expansion and it is difficult to catch up because growth rates in the final periods of expansions tend to decline. The US missed the opportunity for recovery of output and employment always afforded in the first four quarters of expansion from recessions. Zero interest rates and quantitative easing were not required or present in successful cyclical expansions and in secular economic growth at 3.0 percent per year and 2.0 percent per capita as measured by Lucas (2011May). There is cyclical uncommonly slow growth in the US instead of allegations of secular stagnation.
Chart I-24, US, Unemployment Rate 16-24 Years, Percent NSA, 1948-2014
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
It is more difficult to move to other jobs after a certain age because of fewer available opportunities for mature individuals than for new entrants into the labor force. Middle-aged unemployed are less likely to find another job. Table I-13 provides the unemployment level ages 45 years and over. The number unemployed ages 45 years and over rose from 1.607 million in Oct 2006 to 4.576 million in Oct 2010 or by 184.8 percent. The number of unemployed ages 45 years and over declined to 3.800 million in Oct 2012 that is still higher by 136.5 percent than in Oct 2006. The number unemployed age 45 and over increased from 1.704 million in Nov 2006 to 3.861 million in Nov 2012, or 126.6 percent. The number unemployed age 45 and over is still higher by 98.5 percent at 3.383 million in Nov 2013 than 1.704 million in Nov 2006. The number unemployed age 45 and over jumped from 1.794 million in Dec 2006 to 4.762 million in Dec 2010 or 165.4 percent. At 3.927 million in Dec 2012, mature unemployment is higher by 2.133 million or 118.9 percent higher than 1.794 million in Dec 2006. The level of unemployment of those aged 45 year or more of 3.632 million in Oct 2013 is higher by 2.025 million than 1.607 million in Oct 2006 or higher by 126.0 percent. The number of unemployed 45 years and over increased from 1.794 million in Dec 2006 to 3.378 million in Nov 2013 or 88.3 percent. The annual number of unemployed 45 years and over increased from 1.848 million in 2006 to 3.719 million in 2013 or 101.2 percent. The number of unemployed 45 years and over increased from 2.126 million in Jan 2006 to 4.394 million in Jan 2013, by 2.618 million or 106.7 percent. The number of unemployed 45 years and over rose from 2.126 million in Jan 2006 to 3.508 million in Jan 2014, by 1.382 million or 65.0 percent. The level of unemployed 45 years or older increased 2.051 million or 99.8 percent from 2.056 million in Feb 2006 to 4.107 million in Feb 2013 and at 3.490 million in Feb 2014 is higher by 69.7 percent than in Feb 2006. The number of unemployed 45 years and over increased 2.048 million or 108.9 percent from 1.881 million in Mar 2006 to 3.929 million in Mar 2013 and at 3.394 million in Mar 2014 is higher by 80.4 percent than in Mar 2006. The number of unemployed 45 years and over increased 1.846 million or 100.2 percent from 1.843 million in Apr 2006 to 3.689 million in Apr 2013 and at 3.006 million in Apr 2014 is higher by 1.163 million or 63.1 percent. The number of unemployed ages 45 years and over increased 102.1 percent from 1.784 million in May 2006 to 3.605 million in May 2014 and at 2.913 million in May 2014 is higher by 63.3 percent than in May 2007.
The number of unemployed ages 45 years and over increased 102.1 percent from 1.805 million in Jun 2007 to 3.648 million in Jun 2013 and at 2.832 million in Jun 2014 is higher by 56.9 percent than in Jun 2007. The actual number unemployed is likely much higher because many are not accounted who abandoned job searches in frustration there may not be a job for them. Recent improvements may be illusory.
Table I-13, US, Unemployment Level 45 Years and Over, Thousands NSA
Year | Jan | Feb | Mar | Apr | May | Jun | Nov | Dec | Annual |
2000 | 1498 | 1392 | 1291 | 1062 | 1074 | 1163 | 1242 | 1217 | 1249 |
2001 | 1572 | 1587 | 1533 | 1421 | 1259 | 1371 | 1786 | 1901 | 1576 |
2002 | 2235 | 2280 | 2138 | 2101 | 1999 | 2190 | 2013 | 2210 | 2114 |
2003 | 2495 | 2415 | 2485 | 2287 | 2112 | 2212 | 2132 | 2130 | 2253 |
2004 | 2453 | 2397 | 2354 | 2160 | 2025 | 2182 | 2053 | 2086 | 2149 |
2005 | 2286 | 2286 | 2126 | 1939 | 1844 | 1868 | 1920 | 1963 | 2009 |
2006 | 2126 | 2056 | 1881 | 1843 | 1784 | 1813 | 1704 | 1794 | 1848 |
2007 | 2155 | 2138 | 2031 | 1871 | 1803 | 1805 | 1925 | 2120 | 1966 |
2008 | 2336 | 2336 | 2326 | 2104 | 2095 | 2211 | 3078 | 3485 | 2540 |
2009 | 4138 | 4380 | 4518 | 4172 | 4175 | 4505 | 4655 | 4960 | 4500 |
2010 | 5314 | 5307 | 5194 | 4770 | 4565 | 4564 | 4909 | 4762 | 4879 |
2011 | 5027 | 4837 | 4748 | 4373 | 4356 | 4559 | 4195 | 4182 | 4537 |
2012 | 4458 | 4472 | 4390 | 4037 | 4083 | 4084 | 3861 | 3927 | 4133 |
2013 | 4394 | 4107 | 3929 | 3689 | 3605 | 3648 | 3383 | 3378 | 3719 |
2014 | 3508 | 3490 | 3394 | 3006 | 2913 | 2832 |
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
Chart I-25 provides the level unemployed ages 45 years and over. There was an increase in the recessions of the 1980s, 1991 and 2001 followed by declines to earlier levels. The current expansion of the economy after IIIQ2009 has not been sufficiently vigorous to reduce significantly middle-age unemployment. Recent improvements could be illusory because many abandoned job searches in frustration that there may not be jobs for them and are not counted as unemployed.
Chart I-25, US, Unemployment Level Ages 45 Years and Over, Thousands, NSA, 1976-2014
Source: US Bureau of Labor Statistics http://www.bls.gov/data/
The analysis by Kydland (http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2004/kydland-bio.html) and Prescott (http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2004/prescott-bio.html) (1977, 447-80, equation 5) uses the “expectation augmented” Phillips curve with the natural rate of unemployment of Friedman (1968) and Phelps (1968), which in the notation of Barro and Gordon (1983, 592, equation 1) is:
Ut = Unt – α(πt – πe) α > 0 (1)
Where Ut is the rate of unemployment at current time t, Unt is the natural rate of unemployment, πt is the current rate of inflation and πe is the expected rate of inflation by economic agents based on current information. Equation (1) expresses unemployment net of the natural rate of unemployment as a decreasing function of the gap between actual and expected rates of inflation. The system is completed by a social objective function, W, depending on inflation, π, and unemployment, U:
W = W(πt, Ut) (2)
The policymaker maximizes the preferences of the public, (2), subject to the constraint of the tradeoff of inflation and unemployment, (1). The total differential of W set equal to zero provides an indifference map in the Cartesian plane with ordered pairs (πt, Ut - Un) such that the consistent equilibrium is found at the tangency of an indifference curve and the Phillips curve in (1). The indifference curves are concave to the origin. The consistent policy is not optimal. Policymakers without discretionary powers following a rule of price stability would attain equilibrium with unemployment not higher than with the consistent policy. The optimal outcome is obtained by the rule of price stability, or zero inflation, and no more unemployment than under the consistent policy with nonzero inflation and the same unemployment. Taylor (1998LB) attributes the sustained boom of the US economy after the stagflation of the 1970s to following a monetary policy rule instead of discretion (see Taylor 1993, 1999). It is not uncommon for effects of regulation differing from those intended by policy. Professors Edward C. Prescott and Lee E. Ohanian (2014Feb), writing on “US productivity growth has taken a dive,” on Feb 3, 2014, published in the Wall Street Journal (http://online.wsj.com/news/articles/SB10001424052702303942404579362462611843696?KEYWORDS=Prescott), argue that impressive productivity growth over the long-term constructed US prosperity and wellbeing. Prescott and Ohanian (2014Feb) measure US productivity growth at 2.5 percent per year since 1948. Average US productivity growth has been only 1.1 percent on average since 2011. Prescott and Ohanian (2014Feb) argue that living standards in the US increased at 28 percent in a decade but with current slow growth of productivity will only increase 12 percent by 2024. There may be collateral effects on productivity growth from policy design similar to those in Kydland and Prescott (1977). The Bureau of Labor Statistics important report on productivity and costs released on May 7, 2014 (http://www.bls.gov/lpc/) supports the argument of decline of productivity in the US analyzed by Prescott and Ohanian (2014Feb). Table II-2 provides the annual percentage changes of productivity, real hourly compensation and unit labor costs for the entire economic cycle from 2007 to 2013. The data confirm the argument of Prescott and Ohanian (2014Feb): productivity increased cumulatively 2.5 percent from 2011 to 2013 at the average annual rate of 0.8 percent. The situation is direr by excluding growth of 1.5 percent in 2013, which leaves an average of 0.5 percent for 2011 and 2013. Average productivity growth for the entire economic cycle from 2007 to 2013 is only 1.6 percent. The argument by Prescott and Ohanian (2014Feb) is proper in choosing the tail of the business cycle because the increase in productivity in 2009 of 3.1 percent and 3.3 percent in 2013 consisted on reducing labor hours.
Table II-2, US, Revised Nonfarm Business Sector Productivity and Costs Annual Average, ∆% Annual Average
2013 ∆% | 2012 ∆% | 2011 ∆% | 2010 ∆% | 2009 ∆% | 2008 ∆% | 2007 ∆% | |
Productivity | 0.5 | 1.5 | 0.5 | 3.3 | 3.1 | 0.8 | 1.6 |
Real Hourly Compensation | 0.1 | 0.5 | -0.7 | 0.4 | 1.5 | -1.1 | 1.4 |
Unit Labor Costs | 1.1 | 1.2 | 2.0 | -1.2 | -2.0 | 2.0 | 2.6 |
Source: US Bureau of Labor Statistics
In the analysis of Hansen (1939, 3) of secular stagnation, economic progress consists of growth of real income per person driven by growth of productivity. The “constituent elements” of economic progress are “(a) inventions, (b) the discovery and development of new territory and new resources, and (c) the growth of population” (Hansen 1939, 3). Secular stagnation originates in decline of population growth and discouragement of inventions. According to Hansen (1939, 2), US population grew by 16 million in the 1920s but grew by one half or about 8 million in the 1930s with forecasts at the time of Hansen’s writing in 1938 of growth of around 5.3 million in the 1940s. Hansen (1939, 2) characterized demography in the US as “a drastic decline in the rate of population growth.” Hansen’s plea was to adapt economic policy to stagnation of population in ensuring full employment. In the analysis of Hansen (1939, 8), population caused half of the growth of US GDP per year. Growth of output per person in the US and Europe was caused by “changes in techniques and to the exploitation of new natural resources.” In this analysis, population caused 60 percent of the growth of capital formation in the US. Declining population growth would reduce growth of capital formation. Residential construction provided an important share of growth of capital formation. Hansen (1939, 12) argues that market power of imperfect competition discourages innovation with prolonged use of obsolete capital equipment. Trade unions would oppose labor-savings innovations. The combination of stagnating and aging population with reduced innovation caused secular stagnation. Hansen (1939, 12) concludes that there is role for public investments to compensate for lack of dynamism of private investment but with tough tax/debt issues.
The current application of Hansen’s (1938, 1939, 1941) proposition argues that secular stagnation occurs because full employment equilibrium can be attained only with negative real interest rates between minus 2 and minus 3 percent. Professor Lawrence H. Summers (2013Nov8) finds that “a set of older ideas that went under the phrase secular stagnation are not profoundly important in understanding Japan’s experience in the 1990s and may not be without relevance to America’s experience today” (emphasis added). Summers (2013Nov8) argues there could be an explanation in “that the short-term real interest rate that was consistent with full employment had fallen to -2% or -3% sometime in the middle of the last decade. Then, even with artificial stimulus to demand coming from all this financial imprudence, you wouldn’t see any excess demand. And even with a relative resumption of normal credit conditions, you’d have a lot of difficulty getting back to full employment.” The US economy could be in a situation where negative real rates of interest with fed funds rates close to zero as determined by the Federal Open Market Committee (FOMC) do not move the economy to full employment or full utilization of productive resources. Summers (2013Oct8) finds need of new thinking on “how we manage an economy in which the zero nominal interest rates is a chronic and systemic inhibitor of economy activity holding our economies back to their potential.”
Former US Treasury Secretary Robert Rubin (2014Jan8) finds three major risks in prolonged unconventional monetary policy of zero interest rates and quantitative easing: (1) incentive of delaying action by political leaders; (2) “financial moral hazard” in inducing excessive exposures pursuing higher yields of risker credit classes; and (3) major risks in exiting unconventional policy. Rubin (2014Jan8) proposes reduction of deficits by structural reforms that could promote recovery by improving confidence of business attained with sound fiscal discipline.
Professor John B. Taylor (2014Jan01, 2014Jan3) provides clear thought on the lack of relevance of Hansen’s contention of secular stagnation to current economic conditions. The application of secular stagnation argues that the economy of the US has attained full-employment equilibrium since around 2000 only with negative real rates of interest of minus 2 to minus 3 percent. At low levels of inflation, the so-called full-employment equilibrium of negative interest rates of minus 2 to minus 3 percent cannot be attained and the economy stagnates. Taylor (2014Jan01) analyzes multiple contradictions with current reality in this application of the theory of secular stagnation:
- Secular stagnation would predict idle capacity, in particular in residential investment when fed fund rates were fixed at 1 percent from Jun 2003 to Jun 2004. Taylor (2014Jan01) finds unemployment at 4.4 percent with house prices jumping 7 percent from 2002 to 2003 and 14 percent from 2004 to 2005 before dropping from 2006 to 2007. GDP prices doubled from 1.7 percent to 3.4 percent when interest rates were low from 2003 to 2005.
- Taylor (2014Jan01, 2014Jan3) finds another contradiction in the application of secular stagnation based on low interest rates because of savings glut and lack of investment opportunities. Taylor (2009) shows that there was no savings glut. The savings rate of the US in the past decade is significantly lower than in the 1980s.
- Taylor (2014Jan01, 2014Jan3) finds another contradiction in the low ratio of investment to GDP currently and reduced investment and hiring by US business firms.
- Taylor (2014Jan01, 2014Jan3) argues that the financial crisis and global recession were caused by weak implementation of existing regulation and departure from rules-based policies.
- Taylor (2014Jan01, 2014Jan3) argues that the recovery from the global recession was constrained by a change in the regime of regulation and fiscal/monetary policies.
The analysis by Kydland (http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2004/kydland-bio.html) and Prescott (http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2004/prescott-bio.html) (1977, 447-80, equation 5) uses the “expectation augmented” Phillips curve with the natural rate of unemployment of Friedman (1968) and Phelps (1968), which in the notation of Barro and Gordon (1983, 592, equation 1) is:
Ut = Unt – α(πt – πe) α > 0 (1)
Where Ut is the rate of unemployment at current time t, Unt is the natural rate of unemployment, πt is the current rate of inflation and πe is the expected rate of inflation by economic agents based on current information. Equation (1) expresses unemployment net of the natural rate of unemployment as a decreasing function of the gap between actual and expected rates of inflation. The system is completed by a social objective function, W, depending on inflation, π, and unemployment, U:
W = W(πt, Ut) (2)
The policymaker maximizes the preferences of the public, (2), subject to the constraint of the tradeoff of inflation and unemployment, (1). The total differential of W set equal to zero provides an indifference map in the Cartesian plane with ordered pairs (πt, Ut - Un) such that the consistent equilibrium is found at the tangency of an indifference curve and the Phillips curve in (1). The indifference curves are concave to the origin. The consistent policy is not optimal. Policymakers without discretionary powers following a rule of price stability would attain equilibrium with unemployment not higher than with the consistent policy. The optimal outcome is obtained by the rule of price stability, or zero inflation, and no more unemployment than under the consistent policy with nonzero inflation and the same unemployment. Taylor (1998LB) attributes the sustained boom of the US economy after the stagflation of the 1970s to following a monetary policy rule instead of discretion (see Taylor 1993, 1999). It is not uncommon for effects of regulation differing from those intended by policy. Professors Edward C. Prescott and Lee E. Ohanian (2014Feb), writing on “US productivity growth has taken a dive,” on Feb 3, 2014, published in the Wall Street Journal (http://online.wsj.com/news/articles/SB10001424052702303942404579362462611843696?KEYWORDS=Prescott), argue that impressive productivity growth over the long-term constructed US prosperity and wellbeing. Prescott and Ohanian (2014Feb) measure US productivity growth at 2.5 percent per year since 1948. Average US productivity growth has been only 1.1 since 2011. Prescott and Ohanian (2014Feb) argue that living standards in the US increased at 28 percent in a decade but with current slow growth of productivity will only increase 12 percent by 2024. There may be collateral effects on productivity growth from policy design similar to those in Kydland and Prescott (1977). The Bureau of Labor Statistics important report on productivity and costs released on Mar 6, 2014 (http://www.bls.gov/lpc/) supports the argument of decline of productivity in the US analyzed by Prescott and Ohanian (2014Feb). Table II-2 provides the annual percentage changes of productivity, real hourly compensation and unit labor costs for the entire economic cycle from 2007 to 2013. The data confirm the argument of Prescott and Ohanian (2014Feb): productivity increased cumulatively 2.5 percent from 2011 to 2013 at the average annual rate of 0.8 percent. The situation is direr by excluding growth of 1.5 percent in 2013, which leaves an average of 0.5 percent for 2011 and 2013. Average productivity growth for the entire economic cycle from 2007 to 2013 is only 1.6 percent. The argument by Prescott and Ohanian (2014Feb) is proper in choosing the tail of the business cycle because the increase in productivity in 2009 of 3.1 percent and 3.3 percent in 2013 consisted on reducing labor hours.
In revealing research, Edward P. Lazear and James R. Spletzer (2012JHJul22) use the wealth of data in the valuable database and resources of the Bureau of Labor Statistics (http://www.bls.gov/data/) in providing clear thought on the nature of the current labor market of the United States. The critical issue of analysis and policy currently is whether unemployment is structural or cyclical. Structural unemployment could occur because of (1) industrial and demographic shifts and (2) mismatches of skills and job vacancies in industries and locations. Consider the aggregate unemployment rate, Y, expressed in terms of share si of a demographic group in an industry i and unemployment rate yi of that demographic group (Lazear and Spletzer 2012JHJul22, 5-6):
Y = ∑isiyi (1)
This equation can be decomposed for analysis as (Lazear and Spletzer 2012JHJul22, 6):
∆Y = ∑i∆siy*i + ∑i∆yis*i (2)
The first term in (2) captures changes in the demographic and industrial composition of the economy ∆si multiplied by the average rate of unemployment y*i , or structural factors. The second term in (2) captures changes in the unemployment rate specific to a group, or ∆yi, multiplied by the average share of the group s*i, or cyclical factors. There are also mismatches in skills and locations relative to available job vacancies. A simple observation by Lazear and Spletzer (2012JHJul22) casts intuitive doubt on structural factors: the rate of unemployment jumped from 4.4 percent in the spring of 2007 to 10 percent in October 2009. By nature, structural factors should be permanent or occur over relative long periods. The revealing result of the exhaustive research of Lazear and Spletzer (2012JHJul22) is:
“The analysis in this paper and in others that we review do not provide any compelling evidence that there have been changes in the structure of the labor market that are capable of explaining the pattern of persistently high unemployment rates. The evidence points to primarily cyclic factors.”
The theory of secular stagnation cannot explain sudden collapse of the US economy and labor markets. The theory of secular stagnation departs from an aggregate production function in which output grows with the use of labor, capital and technology (see Pelaez and Pelaez, Globalization and the State, Vol. I (2008a), 11-6). Simon Kuznets (1971) analyzes modern economic growth in his Lecture in Memory of Alfred Nobel:
“The major breakthroughs in the advance of human knowledge, those that constituted dominant sources of sustained growth over long periods and spread to a substantial part of the world, may be termed epochal innovations. And the changing course of economic history can perhaps be subdivided into economic epochs, each identified by the epochal innovation with the distinctive characteristics of growth that it generated. Without considering the feasibility of identifying and dating such economic epochs, we may proceed on the working assumption that modern economic growth represents such a distinct epoch - growth dating back to the late eighteenth century and limited (except in significant partial effects) to economically developed countries. These countries, so classified because they have managed to take adequate advantage of the potential of modern technology, include most of Europe, the overseas offshoots of Western Europe, and Japan—barely one quarter of world population.”
Chart II-7 provides nonfarm-business labor productivity, measured by output per hour, from 1947 to 2014. The rate of productivity increase continued in the early part of the 2000s but then softened and fell during the global recession. The interruption of productivity increases occurred exclusively in the current business cycle. Lazear and Spletzer (2012JHJul22) find “primarily cyclic” factors in explaining the frustration of currently depressed labor markets in the United States. Stagnation of productivity is another cyclic event and not secular trend. The theory and application of secular stagnation to current US economic conditions is void of reality.
Chart II-7, US, Nonfarm Business Labor Productivity, Output per Hour, 1947-2014, Index 2009=100
Source: US Bureau of Labor Statistics http://www.bls.gov/lpc/
Table II-6 expands Table II-2 providing more complete measurements of the Productivity and Cost research of the Bureau of Labor Statistics. The proper emphasis of Prescott and Ohanian (2014Feb) is on the low productivity increases from 2011 to 2013. Labor productivity increased 3.3 percent in 2010 and 3.1 percent in 2009. There is much stronger yet not sustained performance in 2010 with productivity growing 3.3 percent because of growth of output of 3.2 percent with decline of hours worked of 0.1 percent. Productivity growth of 3.1 percent in 2009 consists of decline of output by 4.3 percent while hours worked collapsed 7.2 percent, which is not a desirable route to progress. The expansion phase of the economic cycle concentrated in one year, 2010, with underperformance in the remainder of the expansion from 2011 to 2013 of productivity growth at average 0.8 percent per year.
Table II-6, US, Productivity and Costs, Annual Percentage Changes 2007-2013
2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | |
Productivity | 0.5 | 1.5 | 0.5 | 3.3 | 3.1 | 0.8 | 1.6 |
Output | 2.2 | 3.7 | 2.5 | 3.2 | -4.3 | -1.3 | 2.3 |
Hours Worked | 1.7 | 2.2 | 2.0 | -0.1 | -7.2 | -2.0 | 0.7 |
Employment | 1.8 | 2.0 | 1.5 | -1.2 | -5.7 | -1.5 | 0.9 |
Average Weekly Hours Worked | -0.2 | 0.2 | 0.5 | 1.1 | -1.6 | -0.6 | -0.2 |
Hourly Compensation | 1.6 | 2.6 | 2.5 | 2.1 | 1.1 | 2.7 | 4.3 |
Consumer Price Inflation | 1.5 | 2.1 | 3.2 | 1.6 | -0.4 | 3.8 | 2.8 |
Real Hourly Compensation | 0.1 | 0.5 | -0.7 | 0.4 | 1.5 | -1.1 | 1.4 |
Non-labor Payments | 3.8 | 6.5 | 4.0 | 7.3 | -0.1 | -0.4 | 3.4 |
Output per Job | 0.3 | 1.7 | 1.0 | 4.4 | 1.5 | 0.2 | 1.4 |
Source: US Bureau of Labor Statistics http://www.bls.gov/lpc/
Productivity growth can bring about prosperity while productivity regression can jeopardize progress. Cobet and Wilson (2002) provide estimates of output per hour and unit labor costs in national currency and US dollars for the US, Japan and Germany from 1950 to 2000 (see Pelaez and Pelaez, The Global Recession Risk (2007), 137-44). The average yearly rate of productivity change from 1950 to 2000 was 2.9 percent in the US, 6.3 percent for Japan and 4.7 percent for Germany while unit labor costs in USD increased at 2.6 percent in the US, 4.7 percent in Japan and 4.3 percent in Germany. From 1995 to 2000, output per hour increased at the average yearly rate of 4.6 percent in the US, 3.9 percent in Japan and 2.6 percent in Germany while unit labor costs in USD fell at minus 0.7 percent in the US, 4.3 percent in Japan and 7.5 percent in Germany. There was increase in productivity growth in Japan and France within the G7 in the second half of the 1990s but significantly lower than the acceleration of 1.3 percentage points per year in the US. Table II-7 provides average growth rates of indicators in the research of productivity and growth of the US Bureau of Labor Statistics. There is dramatic decline of productivity growth in the whole cycle from 2.2 percent per year on average from 1947 to 2013 to 1.6 percent per year on average from 2007 to 2013. Productivity increased at the average rate of 2.3 percent from 1947 to 2007. There is profound drop in the average rate of output growth from 3.4 percent on average from 1947 to 2013 to 1.0 percent from 2007 to 2013. Output grew at 3.7 percent per year on average from 1947 to 2007. The US maintained growth at 3.0 percent on average over entire cycles with expansions at higher rates compensating for contractions. Growth at trend in the entire cycle from IVQ2007 to IQ2014 would have accumulated to 21.2 percent. GDP in IQ2014 would be $18,172.7 billion (in constant dollars of 2009) if the US had grown at trend, which is higher by $2,269.8 billion than actual $15,902.9 billion. There are about two trillion dollars of GDP less than at trend, explaining the 28.6 million unemployed or underemployed equivalent to actual unemployment of 16.3 percent of the effective labor force (http://cmpassocregulationblog.blogspot.com/2014/07/financial-valuations-twenty-seven.html). US GDP in IQ2014 is 12.9 percent lower than at trend. US GDP grew from $14,996.1 billion in IVQ2007 in constant dollars to $15,842.2 billion in IQ2014 or 5.5 percent at the average annual equivalent rate of 0.8 percent. Cochrane (2014Jul2) estimates US GDP at more than 10 percent below trend. The US missed the opportunity to grow at higher rates during the expansion and it is difficult to catch up because growth rates in the final periods of expansions tend to decline. The US missed the opportunity for recovery of output and employment always afforded in the first four quarters of expansion from recessions. Zero interest rates and quantitative easing were not required or present in successful cyclical expansions and in secular economic growth at 3.0 percent per year and 2.0 percent per capita as measured by Lucas (2011May). There is cyclical uncommonly slow growth in the US instead of allegations of secular stagnation. The policy design deserves consideration of Kydland and Prescott (1977) and Prescott and Ohanian (2014Feb) to induce productivity growth for future progress. Hourly compensation increased at the average yearly rate of 5.1 percent from 1947 to 2013 and consumer price inflation at 3.6 percent with real hourly compensation increasing at the average yearly rate of 1.6 percent. Hourly compensation increased at the average yearly rate of 2.1 percent from 2007 to 2013 while consumer price inflation increased at 2.0 percent with real hourly compensation changing at the average yearly rate of 0.1 percent. Hourly compensation increased at the average rate of 5.4 percent from 1947 to 2007 and the consumer price index at 3.8 percent for real hourly compensation of 1.7 percent per year. While hours worked increased at the average yearly rate of 1.2 percent from 1947 to 2013, hours worked fell 3.7 percent from 2007 to 2013. Hours worked increased at the average rate of 1.4 percent from 1947 to 2007. While employment increased at the average yearly rate of 1.4 percent from 1947 to 2013, employment fell 3.3 percent from 2007 to 2013. Employment increased at the average rate of 1.6 percent from 1947 to 2007.
Table II-7, US, Productivity and Costs, Average Annual Percentage Changes 2007-2013 and 1947-2013
Average Annual Percentage Rate 2007-2013 | Average Annual Percentage Rate 1947-2007 | Average Annual Percentage Rate 1947-2013 | |
Productivity | 1.6 | 2.3 | 2.2 |
Output | 1.0 | 3.7 | 3.4 |
Hours | -3.7* | 1.4 | 1.2 |
Employment | -3.3* | 1.6 | 1.4 |
Average Weekly Hours | -0.5* | -14.6* | -15.0* |
Hourly Compensation | 2.1 | 5.4 | 5.1 |
Consumer Price Inflation | 2.0 | 3.8 | 3.6 |
Real Hourly Compensation | 0.1 | 1.7 | 1.6 |
Unit Labor Costs | 0.5 | 3.0 | |
Unit Non-labor Payments | 2.5 | 3.5 | 3.4 |
Output per Job | 1.5 | 2.0 | 2.0 |
* Percentage Change
Source: US Bureau of Labor Statistics http://www.bls.gov/lpc/
Unit labor costs increased sharply during the Great Inflation from the late 1960s to 1981 as shown by sharper slope in Chart II-8. Unit labor costs continued to increase but at a lower rate because of cyclic factors and not because of imaginary secular stagnation.
Chart II-8, US, Nonfarm Business, Unit Labor Costs, 1947-2014, Index 2009=100
Source: US Bureau of Labor Statistics http://www.bls.gov/lpc/
Real hourly compensation increased at relatively high rates after 1947 to the early 1970s but reached a plateau that lasted until the early 1990s, as shown in Chart II-9. There were rapid increases until the global recession. Cyclic factors and not alleged secular stagnation explain the interruption of increases in real hourly compensation.
Chart II-9, US, Nonfarm Business, Real Hourly Compensation, 1947-2014, Index 2009=100
Source: US Bureau of Labor Statistics http://www.bls.gov/lpc/
There are collateral effects of unconventional monetary policy. Chart VIII-1 of the Board of Governors of the Federal Reserve System provides the rate on the overnight fed funds rate and the yields of the 10-year constant maturity Treasury and the Baa seasoned corporate bond. Table VIII-3 provides the data for selected points in Chart VIII-1. There are two important economic and financial events, illustrating the ease of inducing carry trade with extremely low interest rates and the resulting financial crash and recession of abandoning extremely low interest rates.
- The Federal Open Market Committee (FOMC) lowered the target of the fed funds rate from 7.03 percent on Jul 3, 2000, to 1.00 percent on Jun 22, 2004, in pursuit of non-existing deflation (Pelaez and Pelaez, International Financial Architecture (2005), 18-28, The Global Recession Risk (2007), 83-85). Central bank commitment to maintain the fed funds rate at 1.00 percent induced adjustable-rate mortgages (ARMS) linked to the fed funds rate. Lowering the interest rate near the zero bound in 2003-2004 caused the illusion of permanent increases in wealth or net worth in the balance sheets of borrowers and also of lending institutions, securitized banking and every financial institution and investor in the world. The discipline of calculating risks and returns was seriously impaired. The objective of monetary policy was to encourage borrowing, consumption and investment. The exaggerated stimulus resulted in a financial crisis of major proportions as the securitization that had worked for a long period was shocked with policy-induced excessive risk, imprudent credit, high leverage and low liquidity by the incentive to finance everything overnight at interest rates close to zero, from adjustable rate mortgages (ARMS) to asset-backed commercial paper of structured investment vehicles (SIV). The consequences of inflating liquidity and net worth of borrowers were a global hunt for yields to protect own investments and money under management from the zero interest rates and unattractive long-term yields of Treasuries and other securities. Monetary policy distorted the calculations of risks and returns by households, business and government by providing central bank cheap money. Short-term zero interest rates encourage financing of everything with short-dated funds, explaining the SIVs created off-balance sheet to issue short-term commercial paper with the objective of purchasing default-prone mortgages that were financed in overnight or short-dated sale and repurchase agreements (Pelaez and Pelaez, Financial Regulation after the Global Recession, 50-1, Regulation of Banks and Finance, 59-60, Globalization and the State Vol. I, 89-92, Globalization and the State Vol. II, 198-9, Government Intervention in Globalization, 62-3, International Financial Architecture, 144-9). ARMS were created to lower monthly mortgage payments by benefitting from lower short-dated reference rates. Financial institutions economized in liquidity that was penalized with near zero interest rates. There was no perception of risk because the monetary authority guaranteed a minimum or floor price of all assets by maintaining low interest rates forever or equivalent to writing an illusory put option on wealth. Subprime mortgages were part of the put on wealth by an illusory put on house prices. The housing subsidy of $221 billion per year created the impression of ever-increasing house prices. The suspension of auctions of 30-year Treasuries was designed to increase demand for mortgage-backed securities, lowering their yield, which was equivalent to lowering the costs of housing finance and refinancing. Fannie and Freddie purchased or guaranteed $1.6 trillion of nonprime mortgages and worked with leverage of 75:1 under Congress-provided charters and lax oversight. The combination of these policies resulted in high risks because of the put option on wealth by near zero interest rates, excessive leverage because of cheap rates, low liquidity by the penalty in the form of low interest rates and unsound credit decisions. The put option on wealth by monetary policy created the illusion that nothing could ever go wrong, causing the credit/dollar crisis and global recession (Pelaez and Pelaez, Financial Regulation after the Global Recession, 157-66, Regulation of Banks, and Finance, 217-27, International Financial Architecture, 15-18, The Global Recession Risk, 221-5, Globalization and the State Vol. II, 197-213, Government Intervention in Globalization, 182-4). The FOMC implemented increments of 25 basis points of the fed funds target from Jun 2004 to Jun 2006, raising the fed funds rate to 5.25 percent on Jul 3, 2006, as shown in Chart VIII-1. The gradual exit from the first round of unconventional monetary policy from 1.00 percent in Jun 2004 (http://www.federalreserve.gov/boarddocs/press/monetary/2004/20040630/default.htm) to 5.25 percent in Jun 2006 (http://www.federalreserve.gov/newsevents/press/monetary/20060629a.htm) caused the financial crisis and global recession.
- On Dec 16, 2008, the policy determining committee of the Fed decided (http://www.federalreserve.gov/newsevents/press/monetary/20081216b.htm): “The Federal Open Market Committee decided today to establish a target range for the federal funds rate of 0 to 1/4 percent.” Policymakers emphasize frequently that there are tools to exit unconventional monetary policy at the right time. At the confirmation hearing on nomination for Chair of the Board of Governors of the Federal Reserve System, Vice Chair Yellen (2013Nov14 http://www.federalreserve.gov/newsevents/testimony/yellen20131114a.htm), states that: “The Federal Reserve is using its monetary policy tools to promote a more robust recovery. A strong recovery will ultimately enable the Fed to reduce its monetary accommodation and reliance on unconventional policy tools such as asset purchases. I believe that supporting the recovery today is the surest path to returning to a more normal approach to monetary policy.” Perception of withdrawal of $2671 billion, or $2.7 trillion, of bank reserves (http://www.federalreserve.gov/releases/h41/current/h41.htm#h41tab1), would cause Himalayan increase in interest rates that would provoke another recession. There is no painless gradual or sudden exit from zero interest rates because reversal of exposures created on the commitment of zero interest rates forever.
In his classic restatement of the Keynesian demand function in terms of “liquidity preference as behavior toward risk,” James Tobin (http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/1981/tobin-bio.html) identifies the risks of low interest rates in terms of portfolio allocation (Tobin 1958, 86):
“The assumption that investors expect on balance no change in the rate of interest has been adopted for the theoretical reasons explained in section 2.6 rather than for reasons of realism. Clearly investors do form expectations of changes in interest rates and differ from each other in their expectations. For the purposes of dynamic theory and of analysis of specific market situations, the theories of sections 2 and 3 are complementary rather than competitive. The formal apparatus of section 3 will serve just as well for a non-zero expected capital gain or loss as for a zero expected value of g. Stickiness of interest rate expectations would mean that the expected value of g is a function of the rate of interest r, going down when r goes down and rising when r goes up. In addition to the rotation of the opportunity locus due to a change in r itself, there would be a further rotation in the same direction due to the accompanying change in the expected capital gain or loss. At low interest rates expectation of capital loss may push the opportunity locus into the negative quadrant, so that the optimal position is clearly no consols, all cash. At the other extreme, expectation of capital gain at high interest rates would increase sharply the slope of the opportunity locus and the frequency of no cash, all consols positions, like that of Figure 3.3. The stickier the investor's expectations, the more sensitive his demand for cash will be to changes in the rate of interest (emphasis added).”
Tobin (1969) provides more elegant, complete analysis of portfolio allocation in a general equilibrium model. The major point is equally clear in a portfolio consisting of only cash balances and a perpetuity or consol. Let g be the capital gain, r the rate of interest on the consol and re the expected rate of interest. The rates are expressed as proportions. The price of the consol is the inverse of the interest rate, (1+re). Thus, g = [(r/re) – 1]. The critical analysis of Tobin is that at extremely low interest rates there is only expectation of interest rate increases, that is, dre>0, such that there is expectation of capital losses on the consol, dg<0. Investors move into positions combining only cash and no consols. Valuations of risk financial assets would collapse in reversal of long positions in carry trades with short exposures in a flight to cash. There is no exit from a central bank created liquidity trap without risks of financial crash and another global recession. The net worth of the economy depends on interest rates. In theory, “income is generally defined as the amount a consumer unit could consume (or believe that it could) while maintaining its wealth intact” (Friedman 1957, 10). Income, Y, is a flow that is obtained by applying a rate of return, r, to a stock of wealth, W, or Y = rW (Friedman 1957). According to a subsequent statement: “The basic idea is simply that individuals live for many years and that therefore the appropriate constraint for consumption is the long-run expected yield from wealth r*W. This yield was named permanent income: Y* = r*W” (Darby 1974, 229), where * denotes permanent. The simplified relation of income and wealth can be restated as:
W = Y/r (1)
Equation (1) shows that as r goes to zero, r→0, W grows without bound, W→∞. Unconventional monetary policy lowers interest rates to increase the present value of cash flows derived from projects of firms, creating the impression of long-term increase in net worth. An attempt to reverse unconventional monetary policy necessarily causes increases in interest rates, creating the opposite perception of declining net worth. As r→∞, W = Y/r →0. There is no exit from unconventional monetary policy without increasing interest rates with resulting pain of financial crisis and adverse effects on production, investment and employment.
Chart VIII-1, Fed Funds Rate and Yields of Ten-year Treasury Constant Maturity and Baa Seasoned Corporate Bond, Jan 2, 2001 to Jul 10, 2014
Source: Board of Governors of the Federal Reserve System
http://www.federalreserve.gov/releases/h15/
Table VIII-3, Selected Data Points in Chart VIII-1, % per Year
Fed Funds Overnight Rate | 10-Year Treasury Constant Maturity | Seasoned Baa Corporate Bond | |
1/2/2001 | 6.67 | 4.92 | 7.91 |
10/1/2002 | 1.85 | 3.72 | 7.46 |
7/3/2003 | 0.96 | 3.67 | 6.39 |
6/22/2004 | 1.00 | 4.72 | 6.77 |
6/28/2006 | 5.06 | 5.25 | 6.94 |
9/17/2008 | 2.80 | 3.41 | 7.25 |
10/26/2008 | 0.09 | 2.16 | 8.00 |
10/31/2008 | 0.22 | 4.01 | 9.54 |
4/6/2009 | 0.14 | 2.95 | 8.63 |
4/5/2010 | 0.20 | 4.01 | 6.44 |
2/4/2011 | 0.17 | 3.68 | 6.25 |
7/25/2012 | 0.15 | 1.43 | 4.73 |
5/1/13 | 0.14 | 1.66 | 4.48 |
9/5/13 | 0.08 | 2.98 | 5.53 |
11/21/2013 | 0.09 | 2.79 | 5.44 |
11/26/13 | 0.09 | 2.74 | 5.34 (11/26/13) |
12/5/13 | 0.09 | 2.88 | 5.47 |
12/11/13 | 0.09 | 2.89 | 5.42 |
12/18/13 | 0.09 | 2.94 | 5.36 |
12/26/13 | 0.08 | 3.00 | 5.37 |
1/1/2014 | 0.08 | 3.00 | 5.34 |
1/8/2014 | 0.07 | 2.97 | 5.28 |
1/15/2014 | 0.07 | 2.86 | 5.18 |
1/22/2014 | 0.07 | 2.79 | 5.11 |
1/30/2014 | 0.07 | 2.72 | 5.08 |
2/6/2014 | 0.07 | 2.73 | 5.13 |
2/13/2014 | 0.06 | 2.73 | 5.12 |
2/20/14 | 0.07 | 2.76 | 5.15 |
2/27/14 | 0.07 | 2.65 | 5.01 |
3/6/14 | 0.08 | 2.74 | 5.11 |
3/13/14 | 0.08 | 2.66 | 5.05 |
3/20/14 | 0.08 | 2.79 | 5.13 |
3/27/14 | 0.08 | 2.69 | 4.95 |
4/3/14 | 0.08 | 2.80 | 5.04 |
4/10/14 | 0.08 | 2.65 | 4.89 |
4/17/14 | 0.09 | 2.73 | 4.89 |
4/24/14 | 0.10 | 2.70 | 4.84 |
5/1/14 | 0.09 | 2.63 | 4.77 |
5/8/14 | 0.08 | 2.61 | 4.79 |
5/15/14 | 0.09 | 2.50 | 4.72 |
5/22/14 | 0.09 | 2.56 | 4.81 |
5/29/14 | 0.09 | 2.45 | 4.69 |
6/05/14 | 0.09 | 2.59 | 4.83 |
6/12/14 | 0.09 | 2.58 | 4.79 |
6/19/14 | 0.10 | 2.64 | 4.83 |
6/26/14 | 0.10 | 2.53 | 4.71 |
7/2/14 | 0.10 | 2.64 | 4.84 |
7/10/14 | 0.09 | 2.55 | 4.75 |
Source: Board of Governors of the Federal Reserve System
http://www.federalreserve.gov/releases/h15/
(4) Counterfactual of Policies Causing the Financial Crisis and Global Recession. The counterfactual of avoidance of deeper and more prolonged contraction by fiscal and monetary policies is not the critical issue. As Professor John B. Taylor (2012Oct25) argues, the critically important counterfactual is that the financial crisis and global recession would have not occurred in the first place if different economic policies had been followed. The counterfactual intends to verify that a combination of housing policies and discretionary monetary policies instead of rules (Taylor 1993) caused, deepened and prolonged the financial crisis (Taylor 2007, 2008Nov, 2009, 2012FP, 2012Mar27, 2012Mar28, 2012JMCB; see http://cmpassocregulationblog.blogspot.com/2012/06/rules-versus-discretionary-authorities.html) and that the experience resembles that of the Great Inflation of the 1960s and 1970s with stop-and-go growth/inflation that coined the term stagflation (http://cmpassocregulationblog.blogspot.com/2012/06/rules-versus-discretionary-authorities.html http://cmpassocregulationblog.blogspot.com/2011/05/slowing-growth-global-inflation-great.html http://cmpassocregulationblog.blogspot.com/2011/04/new-economics-of-rose-garden-turned.html http://cmpassocregulationblog.blogspot.com/2011/03/is-there-second-act-of-us-great.html and Appendix I).
The explanation of the sharp contraction of United States housing can probably be found in the origins of the financial crisis and global recession. Let V(T) represent the value of the firm’s equity at time T and B stand for the promised debt of the firm to bondholders and assume that corporate management, elected by equity owners, is acting on the interests of equity owners. Robert C. Merton (1974, 453) states:
“On the maturity date T, the firm must either pay the promised payment of B to the debtholders or else the current equity will be valueless. Clearly, if at time T, V(T) > B, the firm should pay the bondholders because the value of equity will be V(T) – B > 0 whereas if they do not, the value of equity would be zero. If V(T) ≤ B, then the firm will not make the payment and default the firm to the bondholders because otherwise the equity holders would have to pay in additional money and the (formal) value of equity prior to such payments would be (V(T)- B) < 0.”
Pelaez and Pelaez (The Global Recession Risk (2007), 208-9) apply this analysis to the US housing market in 2005-2006 concluding:
“The house market [in 2006] is probably operating with low historical levels of individual equity. There is an application of structural models [Duffie and Singleton 2003] to the individual decisions on whether or not to continue paying a mortgage. The costs of sale would include realtor and legal fees. There could be a point where the expected net sale value of the real estate may be just lower than the value of the mortgage. At that point, there would be an incentive to default. The default vulnerability of securitization is unknown.”
There are multiple important determinants of the interest rate: “aggregate wealth, the distribution of wealth among investors, expected rate of return on physical investment, taxes, government policy and inflation” (Ingersoll 1987, 405). Aggregate wealth is a major driver of interest rates (Ingersoll 1987, 406). Unconventional monetary policy, with zero fed funds rates and flattening of long-term yields by quantitative easing, causes uncontrollable effects on risk taking that can have profound undesirable effects on financial stability. Excessively aggressive and exotic monetary policy is the main culprit and not the inadequacy of financial management and risk controls.
The net worth of the economy depends on interest rates. In theory, “income is generally defined as the amount a consumer unit could consume (or believe that it could) while maintaining its wealth intact” (Friedman 1957, 10). Income, Y, is a flow that is obtained by applying a rate of return, r, to a stock of wealth, W, or Y = rW (Ibid). According to a subsequent restatement: “The basic idea is simply that individuals live for many years and that therefore the appropriate constraint for consumption decisions is the long-run expected yield from wealth r*W. This yield was named permanent income: Y* = r*W” (Darby 1974, 229), where * denotes permanent. The simplified relation of income and wealth can be restated as:
W = Y/r (1)
Equation (1) shows that as r goes to zero, r →0, W grows without bound, W→∞.
Lowering the interest rate near the zero bound in 2003-2004 caused the illusion of permanent increases in wealth or net worth in the balance sheets of borrowers and also of lending institutions, securitized banking and every financial institution and investor in the world. The discipline of calculating risks and returns was seriously impaired. The objective of monetary policy was to encourage borrowing, consumption and investment but the exaggerated stimulus resulted in a financial crisis of major proportions as the securitization that had worked for a long period was shocked with policy-induced excessive risk, imprudent credit, high leverage and low liquidity by the incentive to finance everything overnight at close to zero interest rates, from adjustable rate mortgages (ARMS) to asset-backed commercial paper of structured investment vehicles (SIV).
The consequences of inflating liquidity and net worth of borrowers were a global hunt for yields to protect own investments and money under management from the zero interest rates and unattractive long-term yields of Treasuries and other securities. Monetary policy distorted the calculations of risks and returns by households, business and government by providing central bank cheap money. Short-term zero interest rates encourage financing of everything with short-dated funds, explaining the SIVs created off-balance sheet to issue short-term commercial paper used in purchasing default-prone mortgages that were financed in overnight or short-dated sale and repurchase agreements (Pelaez and Pelaez, Financial Regulation after the Global Recession, 50-1, Regulation of Banks and Finance, 59-60, Globalization and the State Vol. I, 89-92, Globalization and the State Vol. II, 198-9, Government Intervention in Globalization, 62-3, International Financial Architecture, 144-9). ARMS were created to lower monthly mortgage payments by benefitting from lower short-dated reference rates. Financial institutions economized in liquidity that was penalized with near zero interest rates. There was no perception of risk because the monetary authority guaranteed a minimum or floor price of all assets by maintaining low interest rates forever or equivalent to writing an illusory put option on wealth. Subprime mortgages were part of the put on wealth by an illusory put on house prices. The housing subsidy of $221 billion per year created the impression of ever-increasing house prices. The suspension of auctions of 30-year Treasuries intended to increase demand for mortgage-backed securities, lowering their yield, which was equivalent to lowering the costs of housing finance and refinancing. Fannie and Freddie purchased or guaranteed $1.6 trillion of nonprime mortgages and worked with leverage of 75:1 under Congress-provided charters and lax oversight. The combination of these policies resulted in high risks because of the put option on wealth by near zero interest rates, excessive leverage because of cheap rates, low liquidity because of the penalty in the form of low interest rates and unsound credit decisions because the put option on wealth by monetary policy created the illusion that nothing could ever go wrong, causing the credit/dollar crisis and global recession (Pelaez and Pelaez, Financial Regulation after the Global Recession, 157-66, Regulation of Banks, and Finance, 217-27, International Financial Architecture, 15-18, The Global Recession Risk, 221-5, Globalization and the State Vol. II, 197-213, Government Intervention in Globalization, 182-4).
There are significant elements of the theory of bank financial fragility of Diamond and Dybvig (1983) and Diamond and Rajan (2000, 2001a, 2001b) that help to explain the financial fragility of banks during the credit/dollar crisis (see also Diamond 2007). The theory of Diamond and Dybvig (1983) as exposed by Diamond (2007) is that banks funding with demand deposits have a mismatch of liquidity (see Pelaez and Pelaez, Regulation of Banks and Finance (2009b), 58-66). A run occurs when too many depositors attempt to withdraw cash at the same time. All that is needed is an expectation of failure of the bank. Three important functions of banks are providing evaluation, monitoring and liquidity transformation. Banks invest in human capital to evaluate projects of borrowers in deciding if they merit credit. The evaluation function reduces adverse selection or financing projects with low present value. Banks also provide important monitoring services of following the implementation of projects, avoiding moral hazard that funds be used for, say, real estate speculation instead of the original project of factory construction. The transformation function of banks involves both assets and liabilities of bank balance sheets. Banks convert an illiquid asset or loan for a project with cash flows in the distant future into a liquid liability in the form of demand deposits that can be withdrawn immediately.
In the theory of banking of Diamond and Rajan (2000, 2001a, 2001b), the bank creates liquidity by tying human assets to capital. The collection of skills of the relationship banker converts an illiquid project of an entrepreneur into liquid demand deposits that are immediately available for withdrawal. The deposit/capital structure is fragile because of the threat of bank runs. In these days of online banking, the run on Washington Mutual was through withdrawals online. A bank run can be triggered by the decline of the value of bank assets below the value of demand deposits.
Pelaez and Pelaez (Regulation of Banks and Finance 2009b, 60, 64-5) find immediate application of the theories of banking of Diamond, Dybvig and Rajan to the credit/dollar crisis after 2007. It is a credit crisis because the main issue was the deterioration of the credit portfolios of securitized banks caused by default of subprime mortgages. It is a dollar crisis because of the weakening dollar resulting from relatively low interest rate policies of the US. It caused systemic effects that converted into a global recession not only because of the huge weight of the US economy in the world economy but also because the credit crisis transferred to the UK and Europe. Management skills or human capital of banks are illustrated by financial engineering of complex products. The increasing importance of human relative to inanimate capital (Rajan and Zingales 2000) is revolutionizing the theory of the firm (Zingales 2000) and corporate governance (Rajan and Zingales 2001). Finance is one of the most important examples of this transformation. Bank charters were the source of profits in the original banking institution. Pricing and structuring financial instruments was revolutionized with option pricing formulas developed by Black and Scholes (1973) and Merton (1973, 1974, 1998) that permitted the development of complex products with fair pricing. The successful financial company must attract and retain finance professionals who have invested in human capital, which is a sunk cost to them and not of the institution where they work.
The complex financial products created for securitized banking with high investments in human capital are based on houses, which are as illiquid as the projects of entrepreneurs in the theory of banking. The liquidity fragility of the securitized bank is equivalent to that of the commercial bank in the theory of banking (Pelaez and Pelaez, Regulation of Banks and Finance (2009b), 65). Banks created off-balance sheet structured investment vehicles (SIV) that issued commercial paper receiving AAA rating because of letters of liquidity guarantee by the banks. The commercial paper was converted into liquidity by its use as collateral in SRPs at the lowest rates and minimal haircuts because of the AAA rating of the guarantor bank. In the theory of banking, default can be triggered when the value of assets is perceived as lower than the value of the deposits. Commercial paper issued by SIVs, securitized mortgages and derivatives all obtained SRP liquidity based on illiquid home mortgage loans at the bottom of the pyramid. The run on the securitized bank had a clear origin (Pelaez and Pelaez, Regulation of Banks and Finance (2009b), 65):
“The increasing default of mortgages resulted in an increase in counterparty risk. Banks were hit by the liquidity demands of their counterparties. The liquidity shock extended to many segments of the financial markets—interbank loans, asset-backed commercial paper (ABCP), high-yield bonds and many others—when counterparties preferred lower returns of highly liquid safe havens, such as Treasury securities, than the risk of having to sell the collateral in SRPs at deep discounts or holding an illiquid asset. The price of an illiquid asset is near zero.”
Gorton and Metrick (2010H, 507) provide a revealing quote to the work in 1908 of Edwin R. A. Seligman, professor of political economy at Columbia University, founding member of the American Economic Association and one of its presidents and successful advocate of progressive income taxation. The intention of the quote is to bring forth the important argument that financial crises are explained in terms of “confidence” but as Professor Seligman states in reference to historical banking crises in the US, the important task is to explain what caused the lack of confidence. It is instructive to repeat the more extended quote of Seligman (1908, xi) on the explanations of banking crises:
“The current explanations may be divided into two categories. Of these the first includes what might be termed the superficial theories. Thus it is commonly stated that the outbreak of a crisis is due to lack of confidence,--as if the lack of confidence was not in itself the very thing which needs to be explained. Of still slighter value is the attempt to associate a crisis with some particular governmental policy, or with some action of a country’s executive. Such puerile interpretations have commonly been confined to countries like the United States, where the political passions of democracy have had the fullest way. Thus the crisis of 1893 was ascribed by the Republicans to the impending Democratic tariff of 1894; and the crisis of 1907 has by some been termed the ‘[Theodore] Roosevelt panic,” utterly oblivious of the fact that from the time of President Jackson, who was held responsible for the troubles of 1837, every successive crisis had had its presidential scapegoat, and has been followed by a political revulsion. Opposed to these popular, but wholly unfounded interpretations, is the second class of explanations, which seek to burrow beneath the surface and to discover the more occult and fundamental causes of the periodicity of crises.”
Scholars ignore superficial explanations in the effort to seek good and truth. The problem of economic analysis of the credit/dollar crisis is the lack of a structural model with which to attempt empirical determination of causes (Gorton and Metrick 2010SB). There would still be doubts even with a well-specified structural model because samples of economic events do not typically permit separating causes and effects. There is also confusion is separating the why of the crisis and how it started and propagated, all of which are extremely important.
In true heritage of the principles of Seligman (1908), Gorton (2009EFM) discovers a prime causal driver of the credit/dollar crisis. The objective of subprime and Alt-A mortgages was to facilitate loans to populations with modest means so that they could acquire a home. These borrowers would not receive credit because of (1) lack of funds for down payments; (2) low credit rating and information; (3) lack of information on income; and (4) errors or lack of other information. Subprime mortgage “engineering” was based on the belief that both lender and borrower could benefit from increases in house prices over the short run. The initial mortgage would be refinanced in two or three years depending on the increase of the price of the house. According to Gorton (2009EFM, 13, 16):
“The outstanding amounts of Subprime and Alt-A [mortgages] combined amounted to about one quarter of the $6 trillion mortgage market in 2004-2007Q1. Over the period 2000-2007, the outstanding amount of agency mortgages doubled, but subprime grew 800%! Issuance in 2005 and 2006 of Subprime and Alt-A mortgages was almost 30% of the mortgage market. Since 2000 the Subprime and Alt-A segments of the market grew at the expense of the Agency (i.e., the government sponsored entities of Fannie Mae and Freddie Mac) share, which fell from almost 80% (by outstanding or issuance) to about half by issuance and 67% by outstanding amount. The lender’s option to rollover the mortgage after an initial period is implicit in the subprime mortgage. The key design features of a subprime mortgage are: (1) it is short term, making refinancing important; (2) there is a step-up mortgage rate that applies at the end of the first period, creating a strong incentive to refinance; and (3) there is a prepayment penalty, creating an incentive not to refinance early.”
The prime objective of successive administrations in the US during the past 20 years and actually since the times of Roosevelt in the 1930s has been to provide “affordable” financing for the “American dream” of home ownership. The US housing finance system is mixed with public, public/private and purely private entities. Congress established the Federal Home Loan Bank (FHLB) system in 1932 that also created the Federal Housing Administration in 1934 with the objective of insuring homes against default. In 1938, the government created the Federal National Mortgage Association, or Fannie Mae, to foster a market for FHA-insured mortgages. Government-insured mortgages were transferred from Fannie Mae to the Government National Mortgage Association, or Ginnie Mae, to permit Fannie Mae to become a publicly owned company. Securitization of mortgages began in 1970 with the government charter to the Federal Home Loan Mortgage Corporation, or Freddie Mac, with the objective of bundling mortgages created by thrift institutions that would be marketed as bonds with guarantees by Freddie Mac (see Pelaez and Pelaez, Financial Regulation after the Global Recession (2009a), 42-8). In the third quarter of 2008, total mortgages in the US were $12,057 billion of which 43.5 percent, or $5423 billion, were retained or guaranteed by Fannie Mae and Freddie Mac (Pelaez and Pelaez, Financial Regulation after the Global Recession (2009a), 45). In 1990, Fannie Mae and Freddie Mac had a share of only 25.4 percent of total mortgages in the US. Mortgages in the US increased from $6922 billion in 2002 to $12,088 billion in 2007, or by 74.6 percent, while the retained or guaranteed portfolio of Fannie and Freddie rose from $3180 billion in 2002 to $4934 billion in 2007, or by 55.2 percent.
According to Pinto (2008) in testimony to Congress:
“There are approximately 25 million subprime and Alt-A loans outstanding, with an unpaid principal amount of over $4.5 trillion, about half of them held or guaranteed by Fannie and Freddie. Their high risk activities were allowed to operate at 75:1 leverage ratio. While they may deny it, there can be no doubt that Fannie and Freddie now own or guarantee $1.6 trillion in subprime, Alt-A and other default prone loans and securities. This comprises over 1/3 of their risk portfolios and amounts to 34% of all the subprime loans and 60% of all Alt-A loans outstanding. These 10.5 million unsustainable, nonprime loans are experiencing a default rate 8 times the level of the GSEs’ 20 million traditional quality loans. The GSEs will be responsible for a large percentage of an estimated 8.8 million foreclosures expected over the next 4 years, accounting for the failure of about 1 in 6 home mortgages. Fannie and Freddie have subprimed America.”
In perceptive analysis of growth and macroeconomics in the past six decades, Rajan (2012FA) argues that “the West can’t borrow and spend its way to recovery.” The Keynesian paradigm is not applicable in current conditions. Advanced economies in the West could be divided into those that reformed regulatory structures to encourage productivity and others that retained older structures. In the period from 1950 to 2000, Cobet and Wilson (2002) find that US productivity, measured as output/hour, grew at the average yearly rate of 2.9 percent while Japan grew at 6.3 percent and Germany at 4.7 percent (see Pelaez and Pelaez, The Global Recession Risk (2007), 135-44). In the period from 1995 to 2000, output/hour grew at the average yearly rate of 4.6 percent in the US but at lower rates of 3.9 percent in Japan and 2.6 percent in Germany. Rajan (2012FA) argues that the differential in productivity growth was accomplished by deregulation in the US at the end of the 1970s and during the 1980s. In contrast, Europe did not engage in reform with the exception of Germany in the early 2000s that empowered the German economy with significant productivity advantage. At the same time, technology and globalization increased relative remunerations in highly skilled, educated workers relative to those without skills for the new economy. It was then politically appealing to improve the fortunes of those left behind by the technological revolution by means of increasing cheap credit. As Rajan (2012FA) argues:
“In 1992, Congress passed the Federal Housing Enterprises Financial Safety and Soundness Act, partly to gain more control over Fannie Mae and Freddie Mac, the giant private mortgage agencies, and partly to promote affordable homeownership for low-income groups. Such policies helped money flow to lower-middle-class households and raised their spending—so much so that consumption inequality rose much less than income inequality in the years before the crisis. These policies were also politically popular. Unlike when it came to an expansion in government welfare transfers, few groups opposed expanding credit to the lower-middle class—not the politicians who wanted more growth and happy constituents, not the bankers and brokers who profited from the mortgage fees, not the borrowers who could now buy their dream houses with virtually no money down, and not the laissez-faire bank regulators who thought they could pick up the pieces if the housing market collapsed. The Federal Reserve abetted these shortsighted policies. In 2001, in response to the dot-com bust, the Fed cut short-term interest rates to the bone. Even though the overstretched corporations that were meant to be stimulated were not interested in investing, artificially low interest rates acted as a tremendous subsidy to the parts of the economy that relied on debt, such as housing and finance. This led to an expansion in housing construction (and related services, such as real estate brokerage and mortgage lending), which created jobs, especially for the unskilled. Progressive economists applauded this process, arguing that the housing boom would lift the economy out of the doldrums. But the Fed-supported bubble proved unsustainable. Many construction workers have lost their jobs and are now in deeper trouble than before, having also borrowed to buy unaffordable houses. Bankers obviously deserve a large share of the blame for the crisis. Some of the financial sector’s activities were clearly predatory, if not outright criminal. But the role that the politically induced expansion of credit played cannot be ignored; it is the main reason the usual checks and balances on financial risk taking broke down.”
In fact, Raghuram G. Rajan (2005) anticipated low liquidity in financial markets resulting from low interest rates before the financial crisis that caused distortions of risk/return decisions provoking the credit/dollar crisis and global recession from IVQ2007 to IIQ2009. Near zero interest rates of unconventional monetary policy induced excessive risks and low liquidity in financial decisions that were critical as a cause of the credit/dollar crisis after 2007. Rajan (2012FA) argues that it is not feasible to return to the employment and income levels before the credit/dollar crisis because of the bloated construction sector, financial system and government budgets.
(5) Historically Sharper Recoveries from Deeper Contractions and Financial Crises. Professor Michael D. Bordo (2012Sep27), at Rutgers University, is providing clear thought on the correct comparison of the current business cycles in the United States with those in United States history. There are two issues raised by Professor Bordo: (1) lumping together countries with different institutions, economic policies and financial systems; and (2) the conclusion that growth is mediocre after financial crises and deep recessions, which is repeated daily in the media, but that Bordo and Haubrich (2012DR) persuasively demonstrate to be inconsistent with United States experience.
Depriving economic history of institutions is perilous as is illustrated by the economic history of Brazil. Douglass C. North (1994) emphasized the key role of institutions in explaining economic history. Rondo E. Cameron (1961, 1967, 1972) applied institutional analysis to banking history. Friedman and Schwartz (1963) analyzed the relation of money, income and prices in the business cycle and related the monetary policy of an important institution, the Federal Reserve System, to the Great Depression. Bordo, Choudhri and Schwartz (1995) analyze the counterfactual of what would have been economic performance if the Fed had used during the Great Depression the Friedman (1960) monetary policy rule of constant growth of money (for analysis of the Great Depression see Pelaez and Pelaez, Regulation of Banks and Finance (2009b), 198-217). Alan Meltzer (2004, 2010a,b) analyzed the Federal Reserve System over its history. The reader would be intrigued by Figure 5 in Reinhart and Rogoff (2010FCDC, 15) in which Brazil is classified in external default for seven years between 1828 and 1834 but not again until 64 years later in 1989, above the 50 years of incidence for “serial default”. William R. Summerhill, Jr. (2007SC, 2007IR) has filled this void in scholarly research on nineteenth-century Brazil. There are important conclusions by Summerhill on the exceptional sample of institutional change or actually lack of change, public finance and financial repression in Brazil between 1822 and 1899, combining tools of economics, political science and history. During seven continuous decades, Brazil did not miss a single interest payment with government borrowing without repudiation of debt or default. What is surprising is that Brazil borrowed by means of long-term bonds and, even more surprising, interest rates fell over time. The external debt of Brazil in 1870 was ₤41,275,961 and the domestic debt in the internal market was ₤25,708,711, or 62.3 percent of the total (Summerhill 2007IR, 73).
The experience of Brazil differed from that of Latin America (Summerhill 2007IR). During the six decades when Brazil borrowed without difficulty, Latin American countries becoming independent after 1820 engaged in total defaults, suffering hardship in borrowing abroad. The countries that borrowed again fell again in default during the nineteenth century. Venezuela defaulted in four occasions. Mexico defaulted in 1827, rescheduling its debt eight different times and servicing the debt sporadically. About 44 percent of Latin America’s sovereign debt was in default in 1855 and approximately 86 percent of total government loans defaulted in London originated in Spanish American borrowing countries.
External economies of commitment to secure private rights in sovereign credit would encourage development of private financial institutions, as postulated in classic work by North and Weingast (1989), Summerhill (2007IR, 22). This is how banking institutions critical to the Industrial Revolution were developed in England (Cameron 1967). The obstacle in Brazil found by Summerhill (2007IR) is that sovereign debt credibility was combined with financial repression. There was a break in Brazil of the chain of effects from protecting public borrowing, as in North and Weingast (1989), to development of private financial institutions.
Professor Stephen Haber (2011, 115) analyzes research in various fields of inquiry that lead to seminal conclusions full of implications for current social and economy policy and institutional organization:
“This chapter has looked at the political and economic histories of three New World economies in order to assess how the distribution of power across society shaped the institutions that governed entry into banking. The results are broadly consistent with the view that the distribution of human capital and the ability to project power exert an effect on an economy’s economic institutions. One clear pattern that emerges from these case studies is that representative institutions alone—such as Brazil’s parliament in the nineteenth century—are necessary but not sufficient conditions to generate economic institutions that give rise to broadly based financial development. Financial incumbents can either capture the representative institutions or form coalitions with their members; effective suffrage is necessary in order to align the incentives of political elites with the end users of credit.
Are these results generalizable? Obviously, more detailed case studies beyond the three studied here are necessary before any firm conclusions should be drawn, but the available evidence from large- N studies is broadly consistent with the patterns we find in Mexico, Brazil, and the United States. Barth, Caprio, and Levine (2006) analyze a cross section of sixty-five countries in 2003 and find that democratic political institutions are associated with greater ease in obtaining a bank charter and fewer restrictions on the operation of banks. They also find that the tight regulatory restrictions on banks created by autocratic political institutions are associated with lower credit market development and less bank stability, as well as with more corruption in lending. Bordo and Rousseau (2006) analyze a panel of seventeen countries over the period 1880 to 1997, and produce similar results: there is a strong, independent effect of proportional representation, frequent elections, female suffrage, and political stability on the size of the financial sector.”
The first sample of Barth, Caprio and Levine (2006) includes 200 regulatory and supervisory practices in 100 countries. The second sample of Barth, Caprio and Levine (2006) increases coverage for 50 more countries and 100 new queries. The conclusions are quite powerful in favor of the private interest view, which explains regulation on motivation of promoting self-interest, in contrast with the public interest view, explaining regulation on the motive of improving public interest. Barth, Caprio and Levine (2006) conclude that disclosure of information would promote sound bank governance by empowering investors in enforcing such governance. Powerful government regulation does not ameliorate bank fragility or promote bank efficiency. The contrast of the private interest view and the public interest view is an important foundation of analysis of bank and financial regulation (Pelaez and Pelaez, Financial Regulation after the Global Recession (2009a), Regulation of Banks and Finance (2008b)).
Nicia Vilela Luz and Carlos Manuel Peláez (1972, 276) find that:
“The lack of interest on historical moments by economists may explain their emphasis on secular trends in their research on the past instead of changes in the historical process. This may be the origin of why they fill gaps in documentation with their extrapolations.”
Vilela Luz (1960) provides classic research on the struggle for industrialization of Brazil from 1808 to 1930. According to Pelaez 1976, 283) following Cameron:
“The banking law of 1860 placed severe restrictions on two basic modern economic institutions—the corporation and the commercial bank. The growth of the volume of bank credit was one of the most significant factors of financial intermediation and economic growth in the major trading countries of the gold standard group. But Brazil placed strong restrictions on the development of banking and intermediation functions, preventing the channeling of coffee savings into domestic industry at an earlier date.”
Brazil actually abandoned the gold standard during multiple financial crises in the nineteenth century, as it should have to protect domestic economic activity. Pelaez (1975, 447) finds similar experience in the first half of nineteenth-century Brazil:
“Brazil’s experience is particularly interesting in that in the period 1808-1851 there were three types of monetary systems. Between 1808 and 1829, there was only one government-related Bank of Brazil, enjoying a perfect monopoly of banking services. No new banks were established in the 1830s after the liquidation of the Bank of Brazil in 1829. During the coffee boom in the late 1830s and 1840s, a system of banks of issue, patterned after similar institutions in the industrial countries [Cameron 1967], supplied the financial services required in the first stage of modernization of the export economy.”
Financial crises in the advanced economies transmitted to nineteenth-century Brazil by the arrival of a ship (Pelaez and Suzigan 1981). The explanation of those crises and the economy of Brazil requires knowledge and roles of institutions, economic policies and the financial system chosen by Brazil, in agreement with Bordo (2012Sep27).
The departing theoretical framework of Bordo and Haubrich (2012DR) is the plucking model of Friedman (1964, 1988). Friedman (1988, 1) recalls “I was led to the model in the course of investigating the direction of influence between money and income. Did the common cyclical fluctuation in money and income reflect primarily the influence of money on income or of income on money?” Friedman (1964, 1988) finds useful for this purpose to analyze the relation between expansions and contractions. Analyzing the business cycle in the United States between 1870 and 1961, Friedman (1964, 15) found that “a large contraction in output tends to be followed on the average by a large business expansion; a mild contraction, by a mild expansion.” The depth of the contraction opens up more room in the movement toward full employment (Friedman 1964, 17):
“Output is viewed as bumping along the ceiling of maximum feasible output except that every now and then it is plucked down by a cyclical contraction. Given institutional rigidities and prices, the contraction takes in considerable measure the form of a decline in output. Since there is no physical limit to the decline short of zero output, the size of the decline in output can vary widely. When subsequent recovery sets in, it tends to return output to the ceiling; it cannot go beyond, so there is an upper limit to output and the amplitude of the expansion tends to be correlated with the amplitude of the contraction.”
Kim and Nelson (1999) test the asymmetric plucking model of Friedman (1964, 1988) relative to a symmetric model using reference cycles of the NBER and find evidence supporting the Friedman model. Bordo and Haubrich (2012DR) analyze 27 cycles beginning in 1872, using various measures of financial crises while considering different regulatory and monetary regimes. The revealing conclusion of Bordo and Haubrich (2012DR, 2) is that:
“Our analysis of the data shows that steep expansions tend to follow deep contractions, though this depends heavily on when the recovery is measured. In contrast to much conventional wisdom, the stylized fact that deep contractions breed strong recoveries is particularly true when there is a financial crisis. In fact, on average, it is cycles without a financial crisis that show the weakest relation between contraction depth and recovery strength. For many configurations, the evidence for a robust bounce-back is stronger for cycles with financial crises than those without.”
The average rate of growth of real GDP in expansions after recessions with financial crises was 8 percent but only 6.9 percent on average for recessions without financial crises (Bordo 2012Sep27). Real GDP declined 12 percent in the Panic of 1907 and increased 13 percent in the recovery, consistent with the plucking model of Friedman (Bordo 2012Sep27). Bordo (2012Sep27) finds two probable explanations for the weak recovery during the current economic cycle: (1) collapse of United States housing; and (2) uncertainty originating in fiscal policy, regulation and structural changes. There are serious doubts if monetary policy is adequate to recover the economy under these conditions.
Lucas (2011May) estimates US economic growth in the long-term at 3 percent per year and about 2 percent per year in per capita terms. There are displacements from this trend caused by events such as wars and recessions but the economy grows much faster during the expansion, compensating for the contraction and maintaining trend growth over the entire cycle. Historical US GDP data exhibit remarkable growth: Lucas (2011May) estimates an increase of US real income per person by a factor of 12 in the period from 1870 to 2010. The explanation by Lucas (2011May) of this remarkable growth experience is that government provided stability and education while elements of “free-market capitalism” were an important driver of long-term growth and prosperity. Lucas sharpens this analysis by comparison with the long-term growth experience of G7 countries (US, UK, France, Germany, Canada, Italy and Japan) and Spain from 1870 to 2010. Countries benefitted from “common civilization” and “technology” to “catch up” with the early growth leaders of the US and UK, eventually growing at a faster rate. Significant part of this catch up occurred after World War II. Lucas (2011May) finds that the catch up stalled in the 1970s. The analysis of Lucas (2011May) is that the 20-40 percent gap that developed originated in differences in relative taxation and regulation that discouraged savings and work incentives in comparison with the US. A larger welfare and regulatory state, according to Lucas (2011May), could be the cause of the 20-40 percent gap. Cobet and Wilson (2002) provide estimates of output per hour and unit labor costs in national currency and US dollars for the US, Japan and Germany from 1950 to 2000 (see Pelaez and Pelaez, The Global Recession Risk (2007), 137-44). The average yearly rate of productivity change from 1950 to 2000 was 2.9 percent in the US, 6.3 percent for Japan and 4.7 percent for Germany while unit labor costs in USD increased at 2.6 percent in the US, 4.7 percent in Japan and 4.3 percent in Germany. From 1995 to 2000, output per hour increased at the average yearly rate of 4.6 percent in the US, 3.9 percent in Japan and 2.6 percent in Germany while unit labor costs in USD fell at minus 0.7 percent in the US, 4.3 percent in Japan and 7.5 percent in Germany. There was increase in productivity growth in Japan and France within the G7 in the second half of the 1990s but significantly lower than the acceleration of 1.3 percentage points per year in the US. The key indicator of growth of real income per capita, which is what a person earns after inflation, measures long-term economic growth and prosperity. A refined concept would include real disposable income per capita, which is what a person earns after inflation and taxes.
Table IB-1 provides the data required for broader comparison of long-term and cyclical performance of the United States economy. Revisions and enhancements of United States GDP and personal income accounts by the Bureau of Economic Analysis (BEA) (http://bea.gov/iTable/index_nipa.cfm) provide important information on long-term growth and cyclical behavior. First, Long-term performance. Using annual data, US GDP grew at the average rate of 3.3 percent per year from 1929 to 2013 and at 3.2 percent per year from 1947 to 2013. Real disposable income grew at the average yearly rate of 3.2 percent from 1929 to 2013 and at 3.7 percent from 1947 to 1999. Real disposable income per capita grew at the average yearly rate of 2.0 percent from 1929 to 2013 and at 2.3 percent from 1947 to 1999. US economic growth was much faster during expansions, compensating contractions in maintaining trend growth for whole cycles. Using annual data, US real disposable income grew at the average yearly rate of 3.5 percent from 1980 to 1989 and real disposable income per capita at 2.6 percent. The US economy has lost its dynamism in the current cycle: real disposable income grew at the yearly average rate of 1.3 percent from 2006 to 2013 and real disposable income per capita at 0.5 percent. Real disposable income grew at the average rate of 1.2 percent from 2007 to 2013 and real disposable income per capita at 0.4 percent. Table IB-1 illustrates the contradiction of long-term growth with the proposition of secular stagnation (Hansen 1938, 1938, 1941 with early critique by Simons (1942). Secular stagnation would occur over long periods. Table IB-1 also provides the corresponding rates of population growth that is only marginally lower at 0.8 to 0.9 percent recently from 1.1 percent over the long-term. GDP growth fell abruptly from 2.6 percent on average from 2000 to 2006 to 1.1 percent from 2006 to 2013 and 1.0 percent from 2007 to 2013 and real disposable income growth fell from 2.9 percent on average from 2000 to 2006 to 1.3 percent from 2006 to 2013. The decline of real per capita disposable income is even sharper from average 2.0 percent from 2000 to 2006 to 0.5 percent from 2006 to 2013 and 0.4 percent from 2007 to 2013 while population growth was 0.8 percent on average. Lazear and Spletzer (2012JHJul122) provide theory and measurements showing that cyclic factors explain currently depressed labor markets. This is also the case of the overall economy. Second, first four quarters of expansion. Growth in the first four quarters of expansion is critical in recovering loss of output and employment occurring during the contraction. In the first four quarters of expansion from IQ1983 to IVQ1983: GDP increased 7.8 percent, real disposable personal income 5.3 percent and real disposable income per capita 4.4 percent. In the first four quarters of expansion from IIIQ2009 to IIQ2010: GDP increased 2.7 percent, real disposable personal income 0.3 percent and real disposable income per capita decreased 0.5 percent. Third, first 19 quarters of expansion. In the expansion from IQ1983 to IIIQ1987: GDP grew 25.6 percent at the annual equivalent rate of 4.9 percent; real disposable income grew 20.5 percent at the annual equivalent rate of 4.0 percent; and real disposable income per capita grew 15.5 percent at the annual equivalent rate of 3.1 percent. In the expansion from IIIQ2009 to IQ2014: GDP grew 10.2 percent at the annual equivalent rate of 2.1 percent; real disposable income grew 6.8 percent at the annual equivalent rate of 1.4 percent; and real disposable personal income per capita grew 3.1 percent at the annual equivalent rate of 0.7 percent. Fourth, entire quarterly cycle. In the entire cycle combining contraction and expansion from IQ1980 to IIIQ1987: GDP grew 25.4 percent at the annual equivalent rate of 2.9 percent; real disposable personal income 27.4 percent at the annual equivalent rate of 3.1 percent; and real disposable personal income per capita 18.5 percent at the annual equivalent rate of 2.1 percent. In the entire cycle combining contraction and expansion from IVQ2007 to IQ2014: GDP grew 5.5 percent at the annual equivalent rate of 0.8 percent; real disposable personal income 8.5 percent at the annual equivalent rate of 1.3 percent; and real disposable personal income per capita 3.3 percent at the annual equivalent rate of 0.5 percent. The United States grew during its history at high rates of per capita income that made its economy the largest in the world. That dynamism is disappearing. Bordo (2012 Sep27) and Bordo and Haubrich (2012DR) provide strong evidence that recoveries have been faster after deeper recessions and recessions with financial crises, casting serious doubts on the conventional explanation of weak growth during the current expansion allegedly because of the depth of the contraction of 4.3 percent from IVQ2007 to IIQ2009 and the financial crisis. The proposition of secular stagnation should explain a long-term process of decay and not the actual abrupt collapse of the economy and labor markets currently.
Table IB-1, US, GDP, Real Disposable Personal Income, Real Disposable Income per Capita and Population in 1983-85 and 2007-2013, %
Long-term Average ∆% per Year | GDP | Population | |
1929-2013 | 3.3 | 1.1 | |
1947-2013 | 3.2 | 1.2 | |
1947-1999 | 3.6 | 1.3 | |
2000-2013 | 1.8 | 0.9 | |
2000-2006 | 2.6 | 0.9 | |
2006-2013 | 1.1 | 0.8 | |
2007-2013 | 1.0 | 0.8 | |
Long-term Average ∆% per Year | Real Disposable Income | Real Disposable Income per Capita | Population |
1929-2013 | 3.2 | 2.0 | 1.1 |
1947-1999 | 3.7 | 2.3 | 1.3 |
2000-2013 | 2.1 | 1.2 | 0.9 |
2000-2006 | 2.9 | 2.0 | 0.9 |
2006-2013 | 1.3 | 0.5 | 0.8 |
2007-2013 | 1.2 | 0.4 | 0.8 |
Whole Cycles Average ∆% per Year | |||
1980-1989 | 3.5 | 2.6 | 0.9 |
2006-2013 | 1.3 | 0.5 | 0.8 |
2007-2013 | 1.2 | 0.4 | 0.8 |
Comparison of Cycles | # Quarters | ∆% | ∆% Annual Equivalent |
GDP | |||
I83 to IV83 IQ83 to IQ87 IQ83 to IIQ87 | 4 17 18 | ||
I83 to IV83 I83 to IQ87 I83 to II87 I83 to III87 | 4 17 18 19 | 7.8 23.1 24.5 25.6 | 7.8 5.0 5.0 4.9 |
RDPI | |||
I83 to IV83 I83 to I87 I83 to III87 | 4 17 19 | 5.3 19.5 20.5 | 5.3 4.3 4.0 |
RDPI Per Capita | |||
I83 to IV83 I83 to I87 I83 to III87 | 4 17 19 | 4.4 15.1 15.5 | 4.4 3.4 3.1 |
Whole Cycle IQ1980 to IIIQ1987 | |||
GDP | 32 | 25.4 | 2.9 |
RDPI | 32 | 27.4 | 3.1 |
RDPI per Capita | 32 | 18.5 | 2.1 |
Population | 32 | 7.5 | 0.9 |
GDP | |||
III09 to II10 III09 to I14 | 4 19 | 2.7 10.2 | 2.7 2.1 |
RDPI | |||
III09 to II10 III09 to I14 | 4 19 | 0.3 6.8 | 0.3 1.4 |
RDPI per Capita | |||
III09 to II10 III09 to I14 | 4 19 | -0.5 3.1 | -0.5 0.7 |
Population | |||
II09 to II010 III09 to I14 | 4 19 | 0.8 3.6 | 0.8 0.7 |
IVQ2007 to IQ2014 | 26 | ||
GDP | 26 | 5.5 | 0.8 |
RDPI | 26 | 8.5 | 1.3 |
RDPI per Capita | 26 | 3.3 | 0.5 |
Population | 26 | 5.0 | 0.7 |
RDPI: Real Disposable Personal Income
Source: US Bureau of Economic Analysis http://www.bea.gov/iTable/index_nipa.cfm
There are seven basic facts illustrating the current economic disaster of the United States:
- GDP maintained trend growth in the entire business cycle from IQ1980 to IIIQ1987, including contractions and expansions. GDP is well below trend in the entire business cycle from IVQ2007 to IQ2014, including contractions and expansions
- Per capita real disposable income exceeded trend growth in the 1980s but is substantially below trend in IQ2014
- Level of employed persons increased in the 1980s but declined into IQ2014
- Level of full-time employed persons increased in the 1980s but declined into IQ2014
- Level unemployed, unemployment rate and employed part-time for economic reasons fell in the recovery from the recessions in the 1980s but not substantially in the recovery since IIIQ2009
- Wealth of households and nonprofit organizations soared in the 1980s but stagnated in real terms into IQ2014
- Gross private domestic investment increased sharply from IQ1980 to IIIQ1987 but gross private domestic investment stagnated and private fixed investment fell from IVQ2007 into IQ2014
There is a critical issue of the United States economy will be able in the future to attain again the level of activity and prosperity of projected trend growth. Growth at trend during the entire business cycles built the largest economy in the world but there may be an adverse, permanent weakness in United States economic performance and prosperity. Table IB-2 provides data for analysis of these seven basic facts. The seven blocks of Table IB-2 are separated initially after individual discussion of each one followed by the full Table IB-2.
1. Trend Growth.
i. As shown in Table IB-2, actual GDP grew cumulatively 25.0 percent from IQ1980 to IIIQ1987, which is relatively close to what trend growth would have been at 26.7 percent. Real GDP grew 25.4 percent from IVQ1979 to IIIQ1987. Rapid growth at the average annual rate of 4.9 percent per quarter during the expansion from IQ1983 to IIIQ1987 erased the loss of GDP of 4.6 percent during the contraction and maintained trend growth at 2.9 percent for GDP and 3.1 percent for real disposable personal income over the entire cycle.
ii. In contrast, cumulative growth from IVQ2007 to IQ2014 was 5.5 percent while trend growth would have been 21.2 percent. GDP in IQ2014 at seasonally adjusted annual rate is $15,824.2 billion as estimated by the Bureau of Economic Analysis (BEA) (http://www.bea.gov/iTable/index_nipa.cfm) and would have been $18,172.7 billion, or $2348.5 billion higher, had the economy grown at trend over the entire business cycle as it happened during the 1980s and throughout most of US history. There is about $2.2 trillion of foregone GDP that the economy would have created as it occurred during past cyclical expansions, which explains why employment net of population growth has not rebounded to even higher than before. There would not be recovery of full employment even with growth of 3 percent per year beginning immediately because the opportunity was lost to grow faster during the expansion from IIIQ2009 to IVQ2013 after the recession from IVQ2007 to IIQ2009. The United States has acquired a heavy social burden of unemployment and underemployment of 26.8 million people or 16.3 percent of the effective labor force (http://cmpassocregulationblog.blogspot.com/2014/07/financial-valuations-twenty-seven.html) that will not diminish significantly even with return to growth of GDP of 3 percent per year because of growth of the labor force by new entrants. The ratio of the labor force of 154.871 million in Jul 2007 to the noninstitutional population of 231.958 million in Jul 2007 was 66.8 percent while the ratio of the labor force of 156.997 million in Jun 2014 to the noninstitutional population of 247.814 million in Jun 2014 was 63.4 percent. The labor force of the US in Jun 2014 corresponding to 66.8 percent of participation in the population would be 165.540 million (0.668 x 247.814). The difference between the measured labor force in Jun 2014 of 156.997 million and the labor force in Jun 2014 with participation rate of 66.8 percent (as in Jul 2007) of 165.540 million is 8.543 million. The level of the labor force in the US has stagnated and is 8.543 million lower than what it would have been had the same participation rate been maintained. Millions of people have abandoned their search for employment because they believe there are no jobs available for them. The key issue is whether the decline in participation of the population in the labor force is the result of people giving up on finding another job (http://cmpassocregulationblog.blogspot.com/2014/07/financial-valuations-twenty-seven.html). The key issue is whether the decline in participation of the population in the labor force is the result of people giving up on finding another job. Structural change in demography occurs over relatively long periods and not suddenly as shown by Edward P. Lazear and James R. Spletzer (2012JHJul22). There is an abrupt cyclical event and no evidence for secular stagnation and similar propositions.
Period IQ1980 to IIIQ1987 | |
GDP SAAR USD Billions | |
IQ1980 | 6,517.9 |
IIIQ1987 | 8,149.4 |
∆% IQ1980 to IIIQ1987 (25.4 percent from IVQ1979 $6496.8 billion) | 25.0 |
∆% Trend Growth IQ1980 to IIIQ1987 | 26.7 |
Period IVQ2007 to IQ2014 | |
GDP SAAR USD Billions | |
IVQ2007 | 14,996.1 |
IQ2014 | 15,824.2 |
∆% IVQ2007 to IQ2014 Actual | 5.5 |
∆% IVQ2007 to IQ2014 Trend | 21.2 |
2. Stagnating Per Capita Real Disposable Income
i. In the entire business cycle from IQ1980 to IIIQ1987, as shown in Table IB-2, growth of per capita real disposable income, or what is left per person after inflation and taxes, grew cumulatively 18.5 percent, which is close to what would have been trend growth of 17.2 percent.
ii. In contrast, in the entire business cycle from IVQ2007 to IQ2014, per capita real disposable income increased 3.3 percent while trend growth would have been 13.7 percent. Income available after inflation and taxes is about the same or lower as before the contraction after 19 consecutive quarters of GDP growth at mediocre rates relative to those prevailing during historical cyclical expansions. In IVQ2012, nominal disposable personal income grew at the SAAR of 10.7 percent and real disposable personal income at 9.0 percent (Table 6 at http://www.bea.gov/newsreleases/national/pi/2014/pdf/pi0514.pdf) The BEA explains as follows: “Personal income in November and December was boosted by accelerated and special dividend payments to persons and by accelerated bonus payments and other irregular pay in private wages and salaries in anticipation of changes in individual income tax rates. Personal income in December was also boosted by lump-sum social security benefit payments” (page 2 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi1212.pdf pages 1-2 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0113.pdf). The Bureau of Economic Analysis explains as (http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0213.pdf 2-3): “The January estimate of employee contributions for government social insurance reflected the expiration of the “payroll tax holiday,” that increased the social security contribution rate for employees and self-employed workers by 2.0 percentage points, or $114.1 billion at an annual rate. For additional information, see FAQ on “How did the expiration of the payroll tax holiday affect personal income for January 2013?” at www.bea.gov. The January estimate of employee contributions for government social insurance also reflected an increase in the monthly premiums paid by participants in the supplementary medical insurance program, in the hospital insurance provisions of the Patient Protection and Affordable Care Act, and in the social security taxable wage base.”
The increase was provided in the “fiscal cliff” law H.R. 8 American Taxpayer Relief Act of 2012 (http://www.gpo.gov/fdsys/pkg/BILLS-112hr8eas/pdf/BILLS-112hr8eas.pdf).
In IQ2013, personal income fell at the SAAR of minus 4.1 percent; real personal income excluding current transfer receipts at minus 7.2 percent; and real disposable personal income at minus 7.9 percent (Table 6 at http://www.bea.gov/newsreleases/national/pi/2014/pdf/pi0514.pdf). The BEA explains as follows (page 3 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0313.pdf):
“The February and January changes in disposable personal income (DPI) mainly reflected the effect of special factors in January, such as the expiration of the “payroll tax holiday” and the acceleration of bonuses and personal dividends to November and to December in anticipation of changes in individual tax rates.”
In IIQ2013, personal income grew at 4.7 percent, real personal income excluding current transfer receipts at 5.6 percent and real disposable income at 4.1 percent (http://www.bea.gov/newsreleases/national/pi/2014/pdf/pi0514.pdf). In IIIQ2013, personal income grew at 4.0 percent, real personal income excluding current transfers at 1.9 percent and real disposable income at 3.0 percent (Table 6 at http://www.bea.gov/newsreleases/national/pi/2014/pdf/pi0514.pdf). In IVQ2013, personal income grew at 2.2 percent and real disposable income at 0.7 percent (Table 6 at http://www.bea.gov/newsreleases/national/pi/2014/pdf/pi0514.pdf). In IQ2014, personal income grew at 3.1 percent in nominal terms and 1.0 percent in real terms excluding current transfer receipts while nominal disposable income grew at 2.9 percent and real disposable income at 1.5 percent (http://www.bea.gov/newsreleases/national/pi/2014/pdf/pi0514.pdf).
Period IQ1980 to IIIQ1987 |
Real Disposable Personal Income per Capita IQ1980 Chained 2009 USD | 20,242 |
Real Disposable Personal Income per Capita IIIQ1987 Chained 2009 USD | 23,978 |
∆% IQ1980 to IIIQ1987 (18.5 percent from IVQ1982 $20,230) | 18.5 |
∆% Trend Growth | 17.2 |
Period IVQ2007 to IQ2014 |
Real Disposable Personal Income per Capita IVQ2007 Chained 2009 USD | 35,823 |
Real Disposable Personal Income per Capita IQ2014 Chained 2009 USD | 37,021 |
∆% IVQ2007 to IQ2014 | 3.3 |
∆% Trend Growth | 13.7 |
3. Number of Employed Persons
i. As shown in Table IB-2, the number of employed persons increased over the entire business cycle from 98.527 million not seasonally adjusted (NSA) in IQ1980 to 113.027 million NSA in IIIQ1987 or by 14.7 percent.
ii. In contrast, during the entire business cycle the number employed fell from 146.334 million in IVQ2007 to 145.090 million in IQ2014 or by 0.9 percent. There are 28.6 million persons unemployed or underemployed, which is 16.3 percent of the effective labor force (http://cmpassocregulationblog.blogspot.com/2014/07/financial-valuations-twenty-seven.html).
Period IQ1980 to IIIQ1987 |
Employed Millions IQ1980 NSA End of Quarter | 98.527 |
Employed Millions IIIQ1987 NSA End of Quarter | 113.027 |
∆% Employed IQ1980 to IIIQ1987 | 14.7 |
Period IVQ2007 to IQ2014 |
Employed Millions IVQ2007 NSA End of Quarter | 146.334 |
Employed Millions IQ2014 NSA End of Quarter | 145.090 |
∆% Employed IVQ2007 to IQ2014 | -0.9 |
4. Number of Full-Time Employed Persons
i. As shown in Table IB-2, during the entire business cycle in the 1980s, including contractions and expansion, the number of employed full-time rose from 81.280 million NSA in IQ1980 to 93.771 million NSA in IIIQ1987 or 15.4 percent.
ii. In contrast, during the entire current business cycle, including contraction and expansion, the number of persons employed full-time fell from 121.042 million in IVQ2007 to 116.985 million in IQ2014 or by minus 3.4 percent.
4. Number of Full-time Employed Persons
Period IQ1980 to IIIQ1987 |
Employed Full-time Millions IQ1980 NSA End of Quarter | 81.280 |
Employed Full-time Millions IIIQ1987 NSA End of Quarter | 93.771 |
∆% Full-time Employed IQ1980 to IIIQ1987 | 15.4 |
Period IVQ2007 to IQ2014 |
Employed Full-time Millions IVQ2007 NSA End of Quarter | 121.042 |
Employed Full-time Millions IQ2014 NSA End of Quarter | 116.985 |
∆% Full-time Employed IVQ2007 to IQ2014 | -3.4 |
5. Unemployed, Unemployment Rate and Employed Part-time for Economic Reasons.
i. As shown in Table IB-2 and in the following block, in the cycle from IQ1980 to IIIQ1987: (a) The rate of unemployment was slightly lower at 5.7 percent in IIIQ1987 relative to 6.6 percent in IQ1980. (b) The number unemployed decreased from 6.983 million in IQ1980 to 6.857 million in IIIQ1987 or 1.8 percent. (c) The number employed part-time for economic reasons increased 36.2 percent from 3.624 million in IQ1980 to 4.937 million in IIIQ1987.
ii. In contrast, in the economic cycle from IVQ2007 to IQ2014: (a) The rate of unemployment increased from 4.8 percent in IVQ2007 to 6.8 percent in IQ2014. (b) The number unemployed increased 42.9 percent from 7.371 million in IVQ2007 to 10.537 million in IQ2014. (c) The number employed part-time for economic reasons because they could not find any other job increased 56.9 percent from 4.750 million in IVQ2007 to 7.455 million in IQ2014. (d) U6 Total Unemployed plus all marginally attached workers plus total employed part time for economic reasons as percent of all civilian labor force plus all marginally attached workers NSA increased from 8.7 percent in IVQ2007 to 12.8 percent in IQ2014.
Period IQ1980 to IIIQ1987 |
Unemployment Rate IQ1980 NSA End of Quarter | 6.6 |
Unemployment Rate IIIQ1987 NSA End of Quarter | 5.7 |
Unemployed IQ1980 Millions End of Quarter | 6.983 |
Unemployed IIIQ1987 Millions End of Quarter | 6.857 |
∆% | -1.8 |
Employed Part-time Economic Reasons Millions IQ1980 End of Quarter | 3.624 |
Employed Part-time Economic Reasons Millions IIIQ1987 End of Quarter | 4.937 |
∆% | 36.2 |
Period IVQ2007 to IQ2014 |
Unemployment Rate IVQ2007 NSA End of Quarter | 4.8 |
Unemployment Rate IQ2014 NSA End of Quarter | 6.8 |
Unemployed IVQ2007 Millions End of Quarter | 7.371 |
Unemployed IQ2014 Millions End of Quarter | 10.537 |
∆% | 42.9 |
Employed Part-time Economic Reasons IVQ2007 Millions End of Quarter | 4.750 |
Employed Part-time Economic Reasons Millions IQ2014 End of Quarter | 7.455 |
∆% | 56.9 |
U6 Total Unemployed plus all marginally attached workers plus total employed part time for economic reasons as percent of all civilian labor force plus all marginally attached workers NSA | |
IVQ2007 | 8.7 |
IQ2014 | 12.8 |
6. Wealth of Households and Nonprofit Organizations.
The comparison of net worth of households and nonprofit organizations in the entire economic cycle from IQ1980 (and from IVQ1979) to IIIQ1987 and from IVQ2007 to IQ2014 is provided in Table IIA-5. The data reveal the following facts for the cycles in the 1980s:
- IVQ1979 to IIIQ1987. Net worth increased 101.3 percent from IVQ1979 to IIIQ1987, the all items CPI index increased 49.9 percent from 76.7 in Dec 1979 to 115.0 in Sep 1987 and real net worth increased 34.3 percent.
- IQ1980 to IVQ1985. Net worth increased 65.6 percent, the all items CPI index increased 36.5 percent from 80.1 in Mar 1980 to 109.3 in Dec 1985 and real net worth increased 21.4 percent.
- IVQ1979 to IVQ1985. Net worth increased 69.1 percent, the all items CPI index increased 42.5 percent from 76.7 in Dec 1979 to 109.3 in Dec 1985 and real net worth increased 18.7 percent.
- IQ1980 to IIIQ1987. Net worth increased 97.2 percent, the all items CPI index increased 43.6 percent from 80.1 in Mar 1980 to 115.0 in Sep 1987 and real net worth increased 37.3 percent.
There is disastrous performance in the current economic cycle:
- IVQ2007 to IQ2014. Net worth increased 20.5 percent, the all items CPI increased 12.5 percent from 210.036 in Dec 2007 to 236.293 in Mar 2014 and real or inflation adjusted net worth increased 7.1 percent. Real estate assets adjusted for inflation fell 13.3 percent.
The explanation is partly in the sharp decline of wealth of households and nonprofit organizations and partly in the mediocre growth rates of the cyclical expansion beginning in IIIQ2009. Long-term economic performance in the United States consisted of trend growth of GDP at 3 percent per year and of per capita GDP at 2 percent per year as measured for 1870 to 2010 by Robert E Lucas (2011May). The economy returned to trend growth after adverse events such as wars and recessions. The key characteristic of adversities such as recessions was much higher rates of growth in expansion periods that permitted the economy to recover output, income and employment losses that occurred during the contractions. Over the business cycle, the economy compensated the losses of contractions with higher growth in expansions to maintain trend growth of GDP of 3 percent and of GDP per capita of 2 percent. The US maintained growth at 3.0 percent on average over entire cycles with expansions at higher rates compensating for contractions. US economic growth has been at only 2.1 percent on average in the cyclical expansion in the 19 quarters from IIIQ2009 to IQ2014. Boskin (2010Sep) measures that the US economy grew at 6.2 percent in the first four quarters and 4.5 percent in the first 12 quarters after the trough in the second quarter of 1975; and at 7.7 percent in the first four quarters and 5.8 percent in the first 12 quarters after the trough in the first quarter of 1983 (Professor Michael J. Boskin, Summer of Discontent, Wall Street Journal, Sep 2, 2010 http://professional.wsj.com/article/SB10001424052748703882304575465462926649950.html). There are new calculations using the revision of US GDP and personal income data since 1929 by the Bureau of Economic Analysis (BEA) (http://bea.gov/iTable/index_nipa.cfm) and the third estimate of GDP for IQ2014 (http://www.bea.gov/newsreleases/national/gdp/2014/pdf/gdp1q14_3rd.pdf). The average of 7.7 percent in the first four quarters of major cyclical expansions is in contrast with the rate of growth in the first four quarters of the expansion from IIIQ2009 to IIQ2010 of only 2.7 percent obtained by dividing GDP of $14,738.0 billion in IIQ2010 by GDP of $14,356.9 billion in IIQ2009 {[$14,738.0/$14,356.9 -1]100 = 2.7%], or accumulating the quarter on quarter growth rates (http://cmpassocregulationblog.blogspot.com/2014/06/financial-indecision-mediocre-cyclical.html and earlier http://cmpassocregulationblog.blogspot.com/2014/05/financial-volatility-mediocre-cyclical.html). The expansion from IQ1983 to IVQ1985 was at the average annual growth rate of 5.9 percent, 5.4 percent from IQ1983 to IIIQ1986, 5.2 percent from IQ1983 to IVQ1986, 5.0 percent from IQ1983 to IQ1987, 5.0 percent from IQ1983 to IIQ1987, 4.9 percent from IQ1983 to IIIQ1987 and at 7.8 percent from IQ1983 to IVQ1983 (http://cmpassocregulationblog.blogspot.com/2014/06/financial-indecision-mediocre-cyclical.html and earlier http://cmpassocregulationblog.blogspot.com/2014/06/financial-instability-mediocre-cyclical.html). The US maintained growth at 3.0 percent on average over entire cycles with expansions at higher rates compensating for contractions. Growth at trend in the entire cycle from IVQ2007 to IQ2014 would have accumulated to 21.2 percent. GDP in IQ2014 would be $18,172.7 billion (in constant dollars of 2009) if the US had grown at trend, which is higher by $2,348.5 billion than actual $15,824.2 billion. There are about two trillion dollars of GDP less than at trend, explaining the 26.8 million unemployed or underemployed equivalent to actual unemployment of 16.3 percent of the effective labor force (http://cmpassocregulationblog.blogspot.com/2014/07/financial-valuations-twenty-seven.html and earlier http://cmpassocregulationblog.blogspot.com/2014/06/financial-risks-rules-discretionary.html). US GDP in IQ2014 is 12.9 percent lower than at trend. US GDP grew from $14,996.1 billion in IVQ2007 in constant dollars to $15,842.2 billion in IQ2014 or 5.5 percent at the average annual equivalent rate of 0.8 percent. Cochrane (2014Jul2) estimates US GDP at more than 10 percent below trend. The US missed the opportunity to grow at higher rates during the expansion and it is difficult to catch up because growth rates in the final periods of expansions tend to decline. The US missed the opportunity for recovery of output and employment always afforded in the first four quarters of expansion from recessions. Zero interest rates and quantitative easing were not required or present in successful cyclical expansions and in secular economic growth at 3.0 percent per year and 2.0 percent per capita as measured by Lucas (2011May). There is cyclical uncommonly slow growth in the US instead of allegations of secular stagnation.
Period IQ1980 to IVQ1985 | |
Net Worth of Households and Nonprofit Organizations USD Millions | |
IVQ1979 IQ1980 | 9,056.4 9,246.9 |
IVQ1985 IIIQ1986 IVQ1986 IQ1987 IIQ1987 IIIQ1987 | 15,313.5 16,320.0 16,875.1 17,532.4 17,821.5 18,233.6 |
∆ USD Billions IVQ1985 IIIQ1987 IQ1980-IVQ1985 IQ1980-IIIQ1986 IQ1980-IVQ1986 IQ1980-IQ1987 IQ1980-IIQ1987 IQ1980-IIIQ1987 | +6,257.1 ∆%69.1 R∆%18.7 +9,177.2 ∆%101.3 R∆%34.3 +6,066.6 ∆%65.6 R∆%21.4 +7,073.1 ∆%76.5 R∆%28.3 +7,628.2 ∆%82.5 R∆%32.3 +8,285.5 ∆%89.6 R∆%35.5 +8,574.6 ∆%92.7 R∆%35.1 +8,986.7 ∆%97.2 R∆%37.3 |
Period IVQ2007 to IQ2013 | |
Net Worth of Households and Nonprofit Organizations USD Millions | |
IVQ2007 | 67,832.1 |
IQ2014 | 81,763.8 |
∆ USD Billions | +13,931.7 ∆%20.5 R∆%7.1 |
Net Worth = Assets – Liabilities. R∆% real percentage change or adjusted for CPI percentage change.
7. Gross Private Domestic Investment.
i. The comparison of gross private domestic investment in the entire economic cycles from IQ1980 to IIIQ1987 and from IVQ2007 to IQQ2014 is in the following block and in Table IB-2. Gross private domestic investment increased from $951.6 billion in IQ1980 to $1,174.6 billion in IIIQ1987 or by 23.4 percent.
ii In the current cycle, gross private domestic investment decreased from $2,605.2 billion in IVQ2007 to $2,562.1 billion in IQ2014, or 1.7 percent. Private fixed investment fell from $2,586.3 billion in IVQ2007 to $2,499.9 billion in IQ2014, or decline by 3.3 percent.
Period IQ1980 to IIIQ1987 | |
Gross Private Domestic Investment USD 2009 Billions | |
IQ1980 | 951.6 |
IIIQ1987 | 1,174.6 |
∆% | 23.4 |
Period IVQ2007 to IQ2014 | |
Gross Private Domestic Investment USD Billions | |
IVQ2007 | 2,605.2 |
IQ2014 | 2,562.1 |
∆% | -1.7 |
Private Fixed Investment USD 2009 Billions | |
IVQ2007 | 2,586.3 |
IQ2014 | 2,499.9 |
∆% | -3.3 |
Table IB-2, US, GDP and Real Disposable Personal Income per Capita Actual and Trend Growth and Employment, 1980-1985 and 2007-2012, SAAR USD Billions, Millions of Persons and ∆%
Period IQ1980 to IIIQ1987 | |
GDP SAAR USD Billions | |
IQ1980 | 6,517.9 |
IIIQ1987 | 8,149.4 |
∆% IQ1980 to IIIQ1987 (25.4 percent from IVQ1979 $6496.8 billion) | 25.0 |
∆% Trend Growth IQ1980 to IIIQ1987 | 26.7 |
Real Disposable Personal Income per Capita IQ1980 Chained 2009 USD | 20,242 |
Real Disposable Personal Income per Capita IIIQ1987 Chained 2009 USD | 23,978 |
∆% IQ1980 to IIIQ1987 (18.5 percent from IVQ1979 $20,230 billion) | 18.5 |
∆% Trend Growth | 17.2 |
Employed Millions IQ1980 NSA End of Quarter | 98.527 |
Employed Millions IIIQ1987 NSA End of Quarter | 113.027 |
∆% Employed IQ1980 to IIIQ1987 | 14.7 |
Employed Full-time Millions IQ1980 NSA End of Quarter | 81.280 |
Employed Full-time Millions IIIQ1987 NSA End of Quarter | 93.771 |
∆% Full-time Employed IQ1980 to IIIQ1987 | 15.4 |
Unemployment Rate IQ1980 NSA End of Quarter | 6.6 |
Unemployment Rate IIIQ1987 NSA End of Quarter | 5.7 |
Unemployed IQ1980 Millions NSA End of Quarter | 6.983 |
Unemployed IIIQ1987 Millions NSA End of Quarter | 6.857 |
∆% | -1.8 |
Employed Part-time Economic Reasons IQ1980 Millions NSA End of Quarter | 3.624 |
Employed Part-time Economic Reasons Millions IIIQ1987 NSA End of Quarter | 4.937 |
∆% | 36.2 |
Net Worth of Households and Nonprofit Organizations USD Billions | |
IVQ1979 | 9,041.9 |
IIQ1987 | 17,795.9 |
∆ USD Billions | +8,754.0 |
∆% CPI Adjusted | 33.1 |
Gross Private Domestic Investment USD 2009 Billions | |
IQ1980 | 951.6 |
IIIQ1987 | 1174.6 |
∆% | 23.4 |
Period IVQ2007 to IQ2014 | |
GDP SAAR USD Billions | |
IVQ2007 | 14,996.1 |
IQ2014 | 15,946.6 |
∆% IVQ2007 to IQ2014 | 6.3 |
∆% IVQ2007 to IQ2014 Trend Growth | 21.2 |
Real Disposable Personal Income per Capita IVQ2007 Chained 2009 USD | 35,823 |
Real Disposable Personal Income per Capita IQ2014 Chained 2009 USD | 37,061 |
∆% IVQ2007 to IQ2014 | 3.5 |
∆% Trend Growth | 13.7 |
Employed Millions IVQ2007 NSA End of Quarter | 146.334 |
Employed Millions IQ2014 NSA End of Quarter | 145.090 |
∆% Employed IVQ2007 to IQ2014 | -0.9 |
Employed Full-time Millions IVQ2007 NSA End of Quarter | 121.042 |
Employed Full-time Millions IQ2014 NSA End of Quarter | 116.985 |
∆% Full-time Employed IVQ2007 to IQ2014 | -3.4 |
Unemployment Rate IVQ2007 NSA End of Quarter | 4.8 |
Unemployment Rate IQ2014 NSA End of Quarter | 6.8 |
Unemployed IVQ2007 Millions NSA End of Quarter | 7.371 |
Unemployed IQ2014 Millions NSA End of Quarter | 10.537 |
∆% | 42.9 |
Employed Part-time Economic Reasons IVQ2007 Millions NSA End of Quarter | 4.750 |
Employed Part-time Economic Reasons Millions IQ2014 NSA End of Quarter | 7.455 |
∆% | 56.9 |
U6 Total Unemployed plus all marginally attached workers plus total employed part time for economic reasons as percent of all civilian labor force plus all marginally attached workers NSA | |
IVQ2007 | 8.7 |
IQ2014 | 12.8 |
Net Worth of Households and Nonprofit Organizations USD Billions | |
IVQ2007 | 67,752.8 |
IVQ2013 | 80.663.7 |
∆ USD Billions | 12,910.9 ∆%19.1 R∆%7.3 |
Gross Private Domestic Investment USD Billions | |
IVQ2007 | 2,605.2 |
IQ2014 | 2,562.1 |
∆% | -1.7 |
Private Fixed Investment USD 2009 Billions | |
IVQ2007 | 2,586.3 |
IQ2014 | 2,499.9 |
∆% | -3.3 |
Note: GDP trend growth used is 3.0 percent per year and GDP per capita is 2.0 percent per year as estimated by Lucas (2011May) on data from 1870 to 2010.
Source: US Bureau of Economic Analysis http://www.bea.gov/iTable/index_nipa.cfm US Bureau of Labor Statistics http://www.bls.gov/data/. Board of Governors of the Federal Reserve System. 2014. Flow of funds, balance sheets and integrated macroeconomic accounts: fourth quarter 2013. Washington, DC, Federal Reserve System, Mar 6. http://www.federalreserve.gov/releases/z1/Current/
The Congressional Budget Office (CBO 2014BEOFeb4) estimates potential GDP, potential labor force and potential labor productivity provided in Table IB-3. The CBO estimates average rate of growth of potential GDP from 1950 to 2012 at 3.3 percent per year. The projected path is significantly lower at 2.1 percent per year from 2013 to 2024. The legacy of the economic cycle expansion from IIIQ2009 to IQ2014 is GDP growth at 2.1 percent on average is in contrast with 4.9 percent on average in the expansion from IQ1983 to IIIQ1987 (http://cmpassocregulationblog.blogspot.com/2014/06/financial-indecision-mediocre-cyclical.html). Subpar economic growth may perpetuate unemployment and underemployment estimated at 28.6 million or 16.3 percent of the effective labor force in Jun 2014 (http://cmpassocregulationblog.blogspot.com/2014/07/financial-valuations-twenty-seven.html) with much lower hiring than in the period before the current cycle (Section I and earlier http://cmpassocregulationblog.blogspot.com/2014/06/financialgeopolitical-risks-recovery.html).
Table IB-3, US, Congressional Budget Office History and Projections of Potential GDP of US Overall Economy, ∆%
Potential GDP | Potential Labor Force | Potential Labor Productivity* | |
Average Annual ∆% | |||
1950-1973 | 3.9 | 1.6 | 2.3 |
1974-1981 | 3.2 | 2.5 | 0.8 |
1982-1990 | 3.2 | 1.6 | 1.6 |
1991-2001 | 3.2 | 1.3 | 1.9 |
2002-2012 | 2.2 | 0.8 | 1.4 |
2007-2012 | 1.7 | 0.6 | 1.1 |
Total 1950-2012 | 3.3 | 1.5 | 1.8 |
Projected Average Annual ∆% | |||
2013-2018 | 2.1 | 0.6 | 1.5 |
2019-2024 | 2.1 | 0.5 | 1.6 |
2013-2024 | 2.1 | 0.5 | 1.6 |
*Ratio of potential GDP to potential labor force
Source: CBO (2014BEOFeb4), CBO, Key assumptions in projecting potential GDP—February 2014 baseline. Washington, DC, Congressional Budget Office, Feb 4, 2014.
Chart IB-1 of the Congressional Budget Office (CBO 2013BEOFeb5) provides actual and potential GDP of the United States from 2000 to 2011 and projected to 2024. Lucas (2011May) estimates trend of United States real GDP of 3.0 percent from 1870 to 2010 and 2.2 percent for per capita GDP. The United States successfully returned to trend growth of GDP by higher rates of growth during cyclical expansion as analyzed by Bordo (2012Sep27, 2012Oct21) and Bordo and Haubrich (2012DR). Growth in expansions following deeper contractions and financial crises was much higher in agreement with the plucking model of Friedman (1964, 1988). The unusual weakness of growth at 2.1 percent on average from IIIQ2009 to IQ2014 during the current economic expansion in contrast with 4.9 percent on average in the cyclical expansion from IQ1983 to IIIQ1987[CP1] (http://cmpassocregulationblog.blogspot.com/2014/06/financial-indecision-mediocre-cyclical.html) cannot be explained by the contraction of 4.3 percent of GDP from IVQ2007 to IIQ2009 and the financial crisis. Weakness of growth in the expansion is perpetuating unemployment and underemployment of 28.6 million or 16.3 percent of the labor force as estimated for Jun 2014 (http://cmpassocregulationblog.blogspot.com/2014/07/financial-valuations-twenty-seven.html). There is no exit from unemployment/underemployment and stagnating real wages because of the collapse of hiring (Section I and earlier http://cmpassocregulationblog.blogspot.com/2014/06/financialgeopolitical-risks-recovery.html). The US economy and labor markets collapsed without recovery. Abrupt collapse of economic conditions can be explained only with cyclic factors (Lazear and Spletzer 2012Jul22) and not by secular stagnation (Hansen 1938, 1939, 1941 with early dissent by Simons 1942).
Chart IB-1, US, Congressional Budget Office, Actual and Projections of Potential GDP, 2000-2024, Trillions of Dollars
Source: Congressional Budget Office, CBO (2013BEOFeb5). The last year in common in both projections is 2017. The revision lowers potential output in 2017 by 7.3 percent relative to the projection in 2007.
Chart IB-2 provides differences in the projections of potential output by the CBO in 2007 and more recently on Feb 4, 2014, which the CBO explains in CBO (2014Feb28).
Chart IB-2, Congressional Budget Office, Revisions of Potential GDP
Source: Congressional Budget Office, 2014Feb 28. Revisions to CBO’s Projection of Potential Output since 2007. Washington, DC, CBO, Feb 28, 2014.
Chart IB-3 provides actual and projected potential GDP from 2000 to 2024. The gap between actual and potential GDP disappears at the end of 2017 (CBO2014Feb4). GDP increases in the projection at 2.5 percent per year.
Chart IB-3, Congressional Budget Office, GDP and Potential GDP
Source: CBO (2013BEOFeb5), CBO, Key assumptions in projecting potential GDP—February 2014 baseline. Washington, DC, Congressional Budget Office, Feb 4, 2014.
© Carlos M. Pelaez, 2009, 2010, 2011, 2012, 2013, 2014.
No comments:
Post a Comment