Recovery in Jun 2020 of Manufacturing Indexes of the Federal Reserve Banks of New York and Philadelphia, Sharp Recovery in Retail Sales in May 2020 In the Global recession, with Output in the US Reaching a High in Feb 2020, Measured by the National Bureau of Economic Research, In the Lockdown of Economic activity in the COVID-19 Event, Recovery of Manufacturing Output in May 2020, Manufacturing Underperforming Cyclically in the Lost Economic Cycle of the Global Recession with Economic Growth Underperforming Below Trend Worldwide, Deep Contraction of Trade Volumes in Major Economies, Increase in Budget Deficit of the United States, Squeeze of Economic Activity by Carry Trades Induced by Zero Interest Rates, United States Inflation, World Cyclical Slow Growth, and Government Intervention in Globalization
Carlos M. Pelaez
© Carlos M. Pelaez, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020.
I United States Industrial Production
IIB Squeeze of Economic Activity by Carry Trades Induced by Zero Interest Rates
IC United States Inflation
IC Long-term US Inflation
ID Current US Inflation
III World Financial Turbulence
IV Global Inflation
V World Economic Slowdown
VA United States
VB Japan
VC China
VD Euro Area
VE Germany
VF France
VG Italy
VH United Kingdom
VI Valuation of Risk Financial Assets
VII Economic Indicators
VIII Interest Rates
IX Conclusion
References
Appendixes
Appendix I The Great Inflation
IIIB Appendix on Safe Haven Currencies
IIIC Appendix on Fiscal Compact
IIID Appendix on European Central Bank Large Scale Lender of Last Resort
IIIG Appendix on Deficit Financing of Growth and the Debt Crisis
Foreword A. Chart VA-1 of the Federal Reserve Bank of New York provides indexes of current and expected economic activity. There were multiple contractions in current activity after the global recession shown in shade. Current activity is weakening relative to strong recovery in the initial expansion in 2010 and 2011 with recent oscillating recovery and weakness. There is sharp improvement in the current index by softer negative reading with strong improvement in the future index in positive reading and nearly positive reading in the current index.
Chart VA-1, US, US, Federal Reserve Bank of New York, Diffusion Index of Current and Expected Activity, Seasonally Adjusted
Source: Federal Reserve Bank of New York
https://www.newyorkfed.org/survey/empire/empiresurvey_overview.html
Chart VA-2 of the Federal Reserve Bank of Philadelphia Manufacturing Business Outlook Survey provides the current and future general activity indexes from Jan 2008 to Jun 2020. The shaded areas are the recession cycle dates of the National Bureau of Economic Research (NBER) (https://www.nber.org/cycles.html). The Philadelphia Fed index dropped during the initial period of recession and then led the recovery, as industry overall. There was a second decline of the index into 2011 followed now by what appeared as renewed strength from late 2011 into Jan 2012. There is decline to negative territory of the current activity index in Nov 2012 and return to positive territory in Dec 2012 with decline of current conditions into contraction in Jan-Feb 2013 and rebound to mild expansion in Mar-Apr 2013. The index of current activity moved into expansion in Jun-Oct 2013 with weakness in Nov-Dec 2013, improving in Jan 2014. There is renewed deterioration in Feb 2014 with rebound in Apr-Sep 2014 and mild deterioration in Oct 2014 followed by improvement in Nov 2014. The index deteriorated in Jan-Feb 2015, stabilizing in Mar-May 2015 and improving in Jun 2015. The index deteriorated in Jul 2015, improved in Aug 2015 and deteriorated in Sep-Oct 2015. The index shows contraction in Nov 2015 to Feb 2016 with recovery in Mar 2016. There is deterioration in Apr-May 2016 with improvement in Jun 2016 and deterioration in Jul 2016. There is improvement in Aug-Sep 2016 with moderate weakening in Oct-Nov 2016. The indexes improved sharply in Dec 2016 and Jan-Feb 2017, softening in Mar-Apr 2017. The current index weakened in Jun 2017 with stability in the six-month forecast. The current index deteriorated in Jul 2017 with improvement in the six-month forecast. The current index deteriorated in Aug 2017 with improvement in the six-month forecast. The current index improved in Sep 2017 with improvement in the six-month forecast. The current index improved and the future index deteriorated in Oct 2017. There is deterioration in Nov 2017 of the current index and improvement of the future index. Both the current and future indexes improved in Dec 2017, deteriorating in Jan 2018. There is improvement of the current index in Feb 2018 with mild deterioration in the future index. The current index improves in Apr 2018 while the future index weakens. There is improvement in the current index in May 2018 with weakening of the future index. There is weakening in the current index in Jun 2018 while the future index weakens. The current index improves in Jul 2018 while the future index weakens. There is weakening of the current index in Aug 2018 while the future index improves. The current index improves in Sep 2018 while the future index weakens. The current index weakens in Oct 2018 while the future index weakens. The current index deteriorates in Nov 2018 while the future index deteriorates. The current index deteriorates in Dec 2018 while the future index improves. The current index improves in Jan 2019 while the future index improves. The current index deteriorates in Feb 2019 while the future index improves. The current index improves in Mar 2019 while the future index deteriorates. The current index deteriorates in Apr 2019 while the future index deteriorates. The current index improves in May 2019 while the future index improves. The current index deteriorates in Jun 2019 while the future index improves. The current index improves in Jul 2019 while the future index improves. The current index deteriorates in Aug 2019 while the future index deteriorates. The current index deteriorates in Sep 2019 while the future index deteriorates. The current index deteriorates in Oct 2019 while the future index improves. The current index improves in Nov 2019 while the future index improves. The current index deteriorates in Dec 2019 while the future index deteriorates. The current index improves in Jan 2020 while the future index improves. The current index improves in Feb 2020 while the future index improves. The current index contracts in Mar 2020 while the future index deteriorates. The current index contracts in Apr 2020 while the future index deteriorates. The current index improves in May 2020 while the future index improves. The current index expands again in Jun 2020 while the future index improves.
Chart VA-2, Federal Reserve Bank of Philadelphia Business Outlook Survey, Current and Future Activity Indexes
Source: Federal Reserve Bank of Philadelphia
https://www.philadelphiafed.org/
Foreword B. Sales of retail and food services increased 17.7 percent in May 2020, after decreasing 14.7 percent in Apr 2020 seasonally adjusted (SA), in the global recession, with output in the US reaching a high in Feb 2020 (https://www.nber.org/cycles.html), in the lockdown of economic activity in the COVID-19 event, decreasing 4.7 percent in May 2020 relative to May 2019 not seasonally adjusted (NSA), as shown in Table VA-3. Excluding motor vehicles and parts, retail sales increased 12.4 percent in May 2020, decreasing 15.2 percent in Apr 2020 SA and decreasing 3.2 percent NSA in May 2020 relative to a year earlier. Sales of motor vehicles and parts increased 44.1 percent in May 2020 after decreasing 12.3 percent in Apr 2020 SA and decreasing 10.5 percent NSA in May 2020 relative to a year earlier. Gasoline station sales increased 12.8 percent SA in May 2020 after decreasing 24.4 percent in May 2020 in oscillating prices of gasoline that are moderating, decreasing 16.7 percent in May 2020 relative to a year earlier.
Table VA-3, US, Percentage Change in Monthly Sales for Retail and Food Services, ∆%
May ∆% SA | Apr ∆% SA | Jan-May 2020 Million Dollars NSA | Jan-May 2020 from Jan-May 2019 ∆% NSA | |
Retail and Food Services | 17.7 | -14.7 | 2,358,235 | -4.7 |
Excluding Motor Vehicles and Parts | 12.4 | -15.2 | 1,909,858 | -3.2 |
Motor Vehicles & Parts Dealers | 44.1 | -12.3 | 448,377 | -10.5 |
Retail | 16.8 | -12.7 | 2,116,588 | -2.2 |
Building Materials | 10.9 | -2.4 | 167,426 | 6.7 |
Food and Beverage | 2.0 | -12.8 | 349,893 | 13.1 |
Grocery | 1.3 | -13.3 | 315,597 | 13.6 |
Health & Personal Care Stores | 0.4 | -14.8 | 144,410 | -2.4 |
Clothing & Clothing Accessories Stores | 188.0 | -75.2 | 57,400 | -42.9 |
Gasoline Stations | 12.8 | -24.4 | 166,761 | -16.7 |
General Merchandise Stores | 6.0 | -13.6 | 285,459 | 2.6 |
Food Services & Drinking Places | 29.1 | -34.6 | 241,647 | -22.3 |
Source: US Census Bureau https://www.census.gov/retail/index.html
Chart VA-6A provides monthly percentage changes of sales of retail and food services from Jan 2019 to May 2020.There is vertical increase in May 2020 after collapse in Feb-Apr 2020.
Chart VA-6A, US, Monthly Percentage Change of Retail and Food Services Sales, Jan 2019-May 2020
Source: US Census Bureau https://www.census.gov/retail/index.html
Chart VA-7 of the US Census Bureau provides total sales of retail trade and food services seasonally adjusted (SA) from Jan 1992 to May 2020 in millions of dollars. The impact on sales of the shallow recession of 2001 was much milder than the sharp contraction in the global recession from IVQ2007 to IIQ2009. There is flattening in the final segment of the series followed by another increase/decrease. Sales collapsed in the lockdown of economic activity in the COVID-19 event. Data are not adjusted for price changes. There is sharp decline in Feb-Mar 2020 with sharp recovery in May 2020.
Chart VA-7, US, Total Sales of Retail Trade and Food Services, SA, Jan 1992-May 2020, Millions of Dollars
Source: US Census Bureau https://www.census.gov/retail/index.html
Chart VA-7 of the US Census Bureau provides total sales of retail trade and food services seasonally adjusted (SA) from Jan 2019 to May 2020 in millions of dollars. Sales jumped in May 2020 in recovery from the contraction in Feb-Mar 2020.
Chart VA-7A, US, Total Sales of Retail Trade and Food Services, SA, Jan 2019-May 2020, Millions of Dollars
Source: US Census Bureau https://www.census.gov/retail/index.html
Chart VA-8 of the US Census Bureau provides total sales of retail trade and food services seasonally adjusted (NSA) from Jan 1992 to May 2020 in millions of dollars. Data are not adjusted for price changes. There is sharp contraction in Feb-Apr 2020, in the global recession, with output in the US reaching a high in Feb 2020 (https://www.nber.org/cycles.html), in the lockdown of economic activity in the COVID-19 event, with sharp recovery in May 2020.
Chart VA-8, US, Total Sales of Retail Trade and Food Services, NSA, Jan 1992-Apr 2020, Millions of Dollars
Source: US Census Bureau https://www.census.gov/retail/index.html
Chart VA-8A of the US Census Bureau provides total sales of retail trade and food services seasonally adjusted (NSA) from Jan 2019 to May 2020 in millions of dollars. Data are not adjusted for price changes. There is sharp recovery in May 2020.
Chart VA-8A, US, Total Sales of Retail Trade and Food Services, NSA, Jan 2019-May 2020, Millions of Dollars
Source: US Census Bureau https://www.census.gov/retail/index.html
IC United States Inflation. C Long-Term US Inflation. Key percentage average yearly rates of the US economy on growth and inflation are provided in Table I-1 updated with release of new data. The choice of dates prevents the measurement of long-term potential economic growth because of two recessions from IQ2001 (Mar) to IVQ2001 (Nov) with decline of GDP of 0.3 percent and the drop in GDP of 4.0 percent in the recession from IVQ2007 (Dec) to IIQ2009 (June) (https://cmpassocregulationblog.blogspot.com/2020/05/mediocre-cyclical-united-states.html and earlier https://cmpassocregulationblog.blogspot.com/2020/03/weekly-rise-of-valuations-of-risk.html). There is a current global recession, with output in the US reaching a high in Feb 2020 (https://www.nber.org/cycles.html), in the lockdown of economic activity in the COVID-19 event. Long-term economic performance in the United States consisted of trend growth of GDP at 3 percent per year and of per capita GDP at 2 percent per year as measured for 1870 to 2010 by Robert E Lucas (2011May). The economy returned to trend growth after adverse events such as wars and recessions. The key characteristic of adversities such as recessions was much higher rates of growth in expansion periods that permitted the economy to recover output, income and employment losses that occurred during the contractions. Over the business cycle, the economy compensated the losses of contractions with higher growth in expansions to maintain trend growth of GDP of 3 percent and of GDP per capita of 2 percent. The US maintained growth at 3.0 percent on average over entire cycles with expansions at higher rates compensating for contractions. Key percentage average yearly rates of the US economy on growth and inflation are provided in Table I-1 updated with release of new data. US economic growth has been at only 2.1 percent on average in the cyclical expansion in the 43 quarters from IIIQ2009 to IQ2020 and in the global recession with output in the US reaching a high in Feb 2020 (https://www.nber.org/cycles.html), in the lockdown of economic activity in the COVID-19 event. Boskin (2010Sep) measures that the US economy grew at 6.2 percent in the first four quarters and 4.5 percent in the first 12 quarters after the trough in the second quarter of 1975; and at 7.7 percent in the first four quarters and 5.8 percent in the first 12 quarters after the trough in the first quarter of 1983 (Professor Michael J. Boskin, Summer of Discontent, Wall Street Journal, Sep 2, 2010 http://professional.wsj.com/article/SB10001424052748703882304575465462926649950.html). There are new calculations using the revision of US GDP and personal income data since 1929 by the Bureau of Economic Analysis (BEA) (http://bea.gov/iTable/index_nipa.cfm) and the second estimate of GDP for IQ2020 (https://www.bea.gov/sites/default/files/2020-05/gdp1q20_2nd.pdf). The average of 7.7 percent in the first four quarters of major cyclical expansions is in contrast with the rate of growth in the first four quarters of the expansion from IIIQ2009 to IIQ2010 of only 2.8 percent obtained by dividing GDP of $15,557.3 billion in IIQ2010 by GDP of $15,134.1 billion in IIQ2009 {[($15,557.3/$15,134.1) -1]100 = 2.8%], or accumulating the quarter on quarter growth rates (https://cmpassocregulationblog.blogspot.com/2020/05/mediocre-cyclical-united-states_31.html and earlier https://cmpassocregulationblog.blogspot.com/2020/05/mediocre-cyclical-united-states.html). The expansion from IQ1983 to IQ1986 was at the average annual growth rate of 5.7 percent, 5.3 percent from IQ1983 to IIIQ1986, 5.1 percent from IQ1983 to IVQ1986, 5.0 percent from IQ1983 to IQ1987, 5.0 percent from IQ1983 to IIQ1987, 4.9 percent from IQ1983 to IIIQ1987, 5.0 percent from IQ1983 to IVQ1987, 4.9 percent from IQ1983 to IIQ1988, 4.8 percent from IQ1983 to IIIQ1988, 4.8 percent from IQ1983 to IVQ1988, 4.8 percent from IQ1983 to IQ1989, 4.7 percent from IQ1983 to IIQ1989, 4.6 percent from IQ1983 to IIIQ1989, 4.5 percent from IQ1983 to IVQ1989. 4.5 percent from IQ1983 to IQ1990, 4.4 percent from IQ1983 to IIQ1990, 4.3 percent from IQ1983 to IIIQ1990, 4.0 percent from IQ1983 to IVQ1990, 3.8 percent from IQ1983 to IQ1991, 3.8 percent from IQ1983 to IIQ1991, 3.8 percent from IQ1983 to IIIQ1991, 3.7 percent from IQ1983 to IVQ1991, 3.7 percent from IQ1983 to IQ1992, 3.7 percent from IQ1983 to IIQ1992, 3.7 percent from IQ1983 to IIIQ2019, 3.8 percent from IQ1983 to IVQ1992, 3.7 percent from IQ1983 to IQ1993, 3.6 percent from IQ1983 to IIQ1993, 3.6 percent from IQ1983 to IIIQ1993 and at 7.9 percent from IQ1983 to IVQ1983 (https://cmpassocregulationblog.blogspot.com/2020/05/mediocre-cyclical-united-states_31.html and earlier https://cmpassocregulationblog.blogspot.com/2020/05/mediocre-cyclical-united-states.html). The National Bureau of Economic Research (NBER) dates a contraction of the US from IQ1990 (Jul) to IQ1991 (Mar) (https://www.nber.org/cycles.html). The expansion lasted until another contraction beginning in IQ2001 (Mar). US GDP contracted 1.3 percent from the pre-recession peak of $8983.9 billion of chained 2009 dollars in IIIQ1990 to the trough of $8865.6 billion in IQ1991 (https://apps.bea.gov/iTable/index_nipa.cfm). The US maintained growth at 3.0 percent on average over entire cycles with expansions at higher rates compensating for contractions. Growth at trend in the entire cycle from IVQ2007 to IQ2020 and in the global recession with output in the US reaching a high in Feb 2020 (https://www.nber.org/cycles.html), in the lockdown of economic activity in the COVID-19 event would have accumulated to 43.6 percent. GDP in IQ2020 would be $22,634.2 billion (in constant dollars of 2012) if the US had grown at trend, which is higher by $3659.5 billion than actual $18,974.7billion. There are more than three trillion dollars of GDP less than at trend, explaining the 47.4 million unemployed or underemployed equivalent to actual unemployment/underemployment of 27.5 percent of the effective labor force with the largest part originating in the global recession with output in the US reaching a high in Feb 2020 (https://www.nber.org/cycles.html), in the lockdown of economic activity in the COVID-19 event (https://cmpassocregulationblog.blogspot.com/2020/06/creation-of-three-million-private.html and earlier https://cmpassocregulationblog.blogspot.com/2020/05/fifty-two-million-unemployed-or.html). Unemployment is increasing sharply while employment is declining rapidly because of the lockdown of economic activity in the global recession resulting from the COVID-19 event (https://www.bls.gov/cps/employment-situation-covid19-faq-april-2020.pdf). US GDP in IQ2020 is 16.2 percent lower than at trend. US GDP grew from $15,762.0 billion in IVQ2007 in constant dollars to $18,974.7 billion in IQ2020 or 20.4 percent at the average annual equivalent rate of 1.5 percent. Professor John H. Cochrane (2014Jul2) estimates US GDP at more than 10 percent below trend. Cochrane (2016May02) measures GDP growth in the US at average 3.5 percent per year from 1950 to 2000 and only at 1.76 percent per year from 2000 to 2015 with only at 2.0 percent annual equivalent in the current expansion. Cochrane (2016May02) proposes drastic changes in regulation and legal obstacles to private economic activity. The US missed the opportunity to grow at higher rates during the expansion and it is difficult to catch up because growth rates in the final periods of expansions tend to decline. The US missed the opportunity for recovery of output and employment always afforded in the first four quarters of expansion from recessions. Zero interest rates and quantitative easing were not required or present in successful cyclical expansions and in secular economic growth at 3.0 percent per year and 2.0 percent per capita as measured by Lucas (2011May). There is cyclical uncommonly slow growth in the US instead of allegations of secular stagnation. There is similar behavior in manufacturing. There is classic research on analyzing deviations of output from trend (see for example Schumpeter 1939, Hicks 1950, Lucas 1975, Sargent and Sims 1977). The long-term trend is growth of manufacturing at average 2.9 percent per year from May 1919 to May 2020. Growth at 2.9 percent per year would raise the NSA index of manufacturing output (SIC, Standard Industrial Classification) from 108.2987 in Dec 2007 to 154.4475 in May 2020. The actual index NSA in May 2020 is 87.3585 which is 43.4 percent below trend. The underperformance of manufacturing in May 2020 originates partly in the earlier global recession augmented by the current global recession with output in the US reaching a high in Feb 2020 (https://www.nber.org/cycles.html), in the lockdown of economic activity in the COVID-19. Manufacturing grew at the average annual rate of 3.3 percent between Dec 1986 and Dec 2006. Growth at 3.3 percent per year would raise the NSA index of manufacturing output (SIC, Standard Industrial Classification) from 108.2987 in Dec 2007 to 162.0699 in May 2020. The actual index NSA in May 2020 is 87.3585, which is 46.1 percent below trend. Manufacturing output grew at average 1.4 percent between Dec 1986 and May 2020. Using trend growth of 1.4 percent per year, the index would increase to 128.7047 in May 2020. The output of manufacturing at 87.3585 in May 2020 is 32.1 percent below trend under this alternative calculation. Using the NAICS (North American Industry Classification System), manufacturing output fell from the high of 110.5147 in Jun 2007 to the low of 86.3800 in Apr 2009 or 21.8 percent. The NAICS manufacturing index increased from 86.3800 in Apr 2009 to 88.2710 in May 2020 or 2.2 percent. The NAICS manufacturing index increased at the annual equivalent rate of 3.5 percent from Dec 1986 to Dec 2006. Growth at 3.5 percent would increase the NAICS manufacturing output index from 106.6777 in Dec 2007 to 163.5246 in May 2020. The NAICS index at 88.2710 in May 2020 is 46.0 below trend. The NAICS manufacturing output index grew at 1.7 percent annual equivalent from Dec 1999 to Dec 2006. Growth at 1.7 percent would raise the NAICS manufacturing output index from 106.6777 in Dec 2007 to 131.5151 in May 2020. The NAICS index at 88.2710 in May 2020 is 32.9 percent below trend under this alternative calculation. The US maintained growth at 3.0 percent on average over entire cycles with expansions at higher rates compensating for contractions. In the period from 1929 to 2019, the average growth rate of real GDP was 3.2 percent and 3.2 percent between 1947 to 2019, which is close to 3.0 percent from 1870 to 2010 measured by Lucas (2011May), as shown in Table I-1. From 1929 to 2019, nominal GDP grew at the average rate of 6.1 percent and at 6.4 percent from 1947 to 2019. The implicit deflator increased at the average rate of 2.8 percent from 1929 to 2019 and at 3.1 percent from 1947 to 2019. Between 2000 and 2019, real GDP grew at the average rate of 2.0 percent per year, nominal GDP at 4.0 percent and the implicit deflator at 1.9 percent. The annual average rate of CPI increase was 3.1 percent from 1913 to 2019, 3.4 percent from 1947 to 2019 and 2.1 percent from 2000 to 2019. Between 2000 and 2019, the average rate of CPI inflation was 2.1 percent per year and 2.0 percent excluding food and energy. From 2000 to 2020, the average rate of CPI inflation was 2.0 percent and 1.9 percent excluding food and energy. The average annual rate of PPI inflation was 2.9 percent from 1947 to 2019 and 2.1 percent from 2000 to 2019. PPI inflation increased at 2.2 percent per year on average from 2000 to 2019, 1.9 percent on average from 2000 to 2020 and at 1.8 percent excluding food and energy from 2000 to 2019 and 1.8 percent from 2000 to 2020. Producer price inflation of finished energy goods increased at average 3.5 percent between 2000 and 2019 and at 2.0 percent between 2000 and 2020. There is also inflation in international trade. Import prices increased at 1.3 percent per year between 2000 and 2019 and at 1.0 percent between 2000 and 2020. The commodity price shock is revealed by inflation of import prices of fuels and lubricants increasing at 5.1 percent per year between 2000 and 2019 and at 1.3 percent between 2000 and 2020. The average percentage rates of increase of import prices excluding fuels are at 0.9 percent for 2002 to 2019 and 0.8 percent for 2002 to 2020. Export prices rose at the average rate of 1.2 percent between 2000 and 2019 and at 0.9 percent from 2000 to 2020. What spared the US of sharper decade-long deterioration of the terms of trade, (export prices)/(import prices), was its diversification and competitiveness in agriculture. Agricultural export prices grew at the average yearly rate of 2.9 percent from 2000 to 2019 and at 2.6 percent from 2000 to 2020. US nonagricultural export prices rose at 1.1 percent per year from 2000 to 2019 and at 0.7 percent from 2000 to 2020. The share of petroleum imports in US trade far exceeds that of agricultural exports. Unconventional monetary policy inducing carry trades in commodities has deteriorated US terms of trade, prices of exports relative to prices of imports, tending to restrict growth of US aggregate real income. These dynamic inflation rates are not similar to those for the economy of Japan where inflation was negative in seven of the 10 years in the 2000s. There is no reality of the proposition of need of unconventional monetary policy in the US because of deflation panic. There is reality in cyclical slow economic growth currently but not in secular stagnation.
Table I-1, US, Average Growth Rates of Real and Nominal GDP, Consumer Price Index, Producer Price Index and Import and Export Prices, Percent per Year
Real GDP | 2000-2019: 2.0% 1929-2019: 3.2% 1947-2019: 3.2% |
Nominal GDP | 2000-2019: 4.0% 1929-2019: 6.1% 1947-2019: 6.4% |
Implicit Price Deflator | 2000-2019: 1.9% 1929-2019: 2.8% 1947-2019: 3.1% |
CPI | 2000-2019: 2.1% Annual 1913-2019: 3.1% 1947-2019: 3.4% 2000-2019: 2.1% |
CPI ex Food and Energy | 2000-2019: 2.0% |
PPI | 2000-2019: 2.2% Annual 1947-2019: 2.9% 2000-2019: 2.1% |
PPI ex Food and Energy | 2000-2019: 1.8% |
PPI Finished Energy Goods | 2000-2019: 3.5% 2000-2020: 2.0% |
Import Prices | 2000-2019: 1.3% |
Import Prices Fuels and Lubricants | 2000-2019: 5.1 2000-2020: 1.3 |
Import Prices Excluding Fuels | 2002-2019: 0.9% |
Export Prices | 2000-2019: 1.2% |
Agricultural Export Prices | 2000-2019: 2.9% |
Nonagricultural Export Prices | 2000-2019: 1.1% |
Note: rates for price indexes in the row beginning with “CPI” and ending in the row “Nonagricultural Export Prices” are for May 2000 to May 2019 and for May 2000 to May 2020.The series excluding fuels begins in 2002.
Sources: https://www.bea.gov/iTable/index_nipa.cfm https://www.bls.gov/ppi/ https://www.bls.gov/cpi/data.htm https://www.bls.gov/mxp/data.htm
ID Current US Inflation. Unconventional monetary policy of zero interest rates and large-scale purchases of long-term securities for the balance sheet of the central bank is proposed to prevent deflation. The data of CPI inflation of all goods and CPI inflation excluding food and energy for the past six decades does not show even one negative change, as shown in Table CPIEX.
Table CPIEX, Annual Percentage Changes of the CPI All Items Excluding Food and Energy
Year | Annual ∆% |
1958 | 2.4 |
1959 | 2.0 |
1960 | 1.3 |
1961 | 1.3 |
1962 | 1.3 |
1963 | 1.3 |
1964 | 1.6 |
1965 | 1.2 |
1966 | 2.4 |
1967 | 3.6 |
1968 | 4.6 |
1969 | 5.8 |
1970 | 6.3 |
1971 | 4.7 |
1972 | 3.0 |
1973 | 3.6 |
1974 | 8.3 |
1975 | 9.1 |
1976 | 6.5 |
1977 | 6.3 |
1978 | 7.4 |
1979 | 9.8 |
1980 | 12.4 |
1981 | 10.4 |
1982 | 7.4 |
1983 | 4.0 |
1984 | 5.0 |
1985 | 4.3 |
1986 | 4.0 |
1987 | 4.1 |
1988 | 4.4 |
1989 | 4.5 |
1990 | 5.0 |
1991 | 4.9 |
1992 | 3.7 |
1993 | 3.3 |
1994 | 2.8 |
1995 | 3.0 |
1996 | 2.7 |
1997 | 2.4 |
1998 | 2.3 |
1999 | 2.1 |
2000 | 2.4 |
2001 | 2.6 |
2002 | 2.4 |
2003 | 1.4 |
2004 | 1.8 |
2005 | 2.2 |
2006 | 2.5 |
2007 | 2.3 |
2008 | 2.3 |
2009 | 1.7 |
2010 | 1.0 |
2011 | 1.7 |
2012 | 2.1 |
2013 | 1.8 |
2014 | 1.7 |
2015 | 1.8 |
2016 | 2.2 |
2017 | 1.8 |
2018 | 2.1 |
2019 | 2.2 |
Source: US Bureau of Labor Statistics https://www.bls.gov/cpi/data
The history of producer price inflation in the past five decades does not provide evidence of deflation. The finished core PPI does not register even one single year of decline, as shown in Table PPIEX.
Table CPIEX, Annual Percentage Changes of the CPI All Items Excluding Food and Energy
Year | Annual ∆% |
1958 | 2.4 |
1959 | 2.0 |
1960 | 1.3 |
1961 | 1.3 |
1962 | 1.3 |
1963 | 1.3 |
1964 | 1.6 |
1965 | 1.2 |
1966 | 2.4 |
1967 | 3.6 |
1968 | 4.6 |
1969 | 5.8 |
1970 | 6.3 |
1971 | 4.7 |
1972 | 3.0 |
1973 | 3.6 |
1974 | 8.3 |
1975 | 9.1 |
1976 | 6.5 |
1977 | 6.3 |
1978 | 7.4 |
1979 | 9.8 |
1980 | 12.4 |
1981 | 10.4 |
1982 | 7.4 |
1983 | 4.0 |
1984 | 5.0 |
1985 | 4.3 |
1986 | 4.0 |
1987 | 4.1 |
1988 | 4.4 |
1989 | 4.5 |
1990 | 5.0 |
1991 | 4.9 |
1992 | 3.7 |
1993 | 3.3 |
1994 | 2.8 |
1995 | 3.0 |
1996 | 2.7 |
1997 | 2.4 |
1998 | 2.3 |
1999 | 2.1 |
2000 | 2.4 |
2001 | 2.6 |
2002 | 2.4 |
2003 | 1.4 |
2004 | 1.8 |
2005 | 2.2 |
2006 | 2.5 |
2007 | 2.3 |
2008 | 2.3 |
2009 | 1.7 |
2010 | 1.0 |
2011 | 1.7 |
2012 | 2.1 |
2013 | 1.8 |
2014 | 1.7 |
2015 | 1.8 |
2016 | 2.2 |
2017 | 1.8 |
2018 | 2.1 |
2019 | 2.2 |
Source: US Bureau of Labor Statistics https://www.bls.gov/cpi/data.htm
The history of producer price inflation in the past five decades does not provide evidence of deflation. The finished core PPI does not register even one single year of decline, as shown in Table PPIEX.
Table PPIEX, Annual Percentage Changes of the PPI Finished Goods Excluding Food and Energy
Year | Annual |
1974 | 11.4 |
1975 | 11.4 |
1976 | 5.7 |
1977 | 6.0 |
1978 | 7.5 |
1979 | 8.9 |
1980 | 11.2 |
1981 | 8.6 |
1982 | 5.7 |
1983 | 3.0 |
1984 | 2.4 |
1985 | 2.5 |
1986 | 2.3 |
1987 | 2.4 |
1988 | 3.3 |
1989 | 4.4 |
1990 | 3.7 |
1991 | 3.6 |
1992 | 2.4 |
1993 | 1.2 |
1994 | 1.0 |
1995 | 2.1 |
1996 | 1.4 |
1997 | 0.3 |
1998 | 0.9 |
1999 | 1.7 |
2000 | 1.3 |
2001 | 1.4 |
2002 | 0.1 |
2003 | 0.2 |
2004 | 1.5 |
2005 | 2.4 |
2006 | 1.5 |
2007 | 1.9 |
2008 | 3.4 |
2009 | 2.6 |
2010 | 1.2 |
2011 | 2.4 |
2012 | 2.6 |
2013 | 1.5 |
2014 | 1.9 |
2015 | 2.0 |
2016 | 1.6 |
2017 | 1.8 |
2018 | 2.3 |
2019 | 2.2 |
Source: US Bureau of Labor Statistics
Chart I-1 provides US nominal GDP from 1929 to 2019. The chart disguises the decline of nominal GDP during the 1930s from $104.6 billion in 1929 to $57.2 billion in 1933 or by 45.3 percent (data from the US Bureau of Economic Analysis at https://apps.bea.gov/iTable/index_nipa.cfm). The level of nominal GDP reached $102.9 billion in 1940 and exceeded the $104.6 billion of 1929 only with $129.3 billion in 1941. The only major visible bump in the chart occurred in the recession of IVQ2007 to IIQ2009 with revised cumulative decline of real GDP of 4.0 percent. US nominal GDP fell from $14,712.8 billion in 2008 to $14,448.9 billion in 2009 or by 1.8 percent. US nominal GDP rose to $14,992.1 billion in 2010 or by 3.8 percent and to $15,542.6 billion in 2011 for an additional 3.7 percent for cumulative increase of 7.6 percent relative to 2009 and to $16,197.0 billion in 2012 for an additional 4.2 percent and cumulative increase of 12.1 percent relative to 2009. US nominal GDP increased from $14,451.9 in 2007 to $21,427.7 billion in 2019 or by 48.3 percent at the average annual rate of 3.3 percent per year (https://apps.bea.gov/iTable/index_nipa.cfm). Tendency for deflation would be reflected in persistent bumps. In contrast, during the Great Depression in the four years of 1929 to 1933, GDP in constant dollars fell 26.3 percent cumulatively and fell 45.3 percent in current dollars (Pelaez and Pelaez, Financial Regulation after the Global Recession (2009a), 150-2, Pelaez and Pelaez, Globalization and the State, Vol. II (2009b), 205-7). The comparison of the global recession after 2007 with the Great Depression is entirely misleading (https://cmpassocregulationblog.blogspot.com/2020/05/mediocre-cyclical-united-states_31.html and earlier https://cmpassocregulationblog.blogspot.com/2020/05/mediocre-cyclical-united-states.html).
Chart I-1, US, Nominal GDP 1929-2019
Source: US Bureau of Economic Analysis
https://apps.bea.gov/iTable/index_nipa.cfm
Chart I-2 provides US real GDP from 1929 to 2019. The chart also disguises the Depression of the 1930s. In the four years of 1929 to 1933, GDP in constant dollars fell 26.3 percent cumulatively and fell 45.3 percent in current dollars (Pelaez and Pelaez, Financial Regulation after the Global Recession (2009a), 150-2, Pelaez and Pelaez, Globalization and the State, Vol. II (2009b), 205-7; data from the US Bureau of Economic Analysis at https://apps.bea.gov/iTable/index_nipa.cfm). Persistent deflation threatening real economic activity would also be reflected in the series of long-term growth of real GDP. There is no such behavior in Chart I-2 except for periodic recessions in the US economy that have occurred throughout history.
Chart I-2, US, Real GDP 1929-2019
Source: US Bureau of Economic Analysis
https://apps.bea.gov/iTable/index_nipa.cfm
Deflation would also be in evidence in long-term series of prices in the form of bumps. The GDP implicit deflator series in Chart I-3 from 1929 to 2019 shows sharp dynamic behavior over time. There is decline of the implicit price deflator of GDP by 25.8 percent from 1929 to 1933 (data from the US Bureau of Economic Analysis at https://apps.bea.gov/iTable/index_nipa.cfm. In contrast, the implicit price deflator of GDP of the US increased from 92.486 (2012 =100) in 2007 to 95.004 in 2009 or by 2.7 percent and increased to 112.345 in 2019 or by 18.3 percent relative to 2009 and 21.5 percent relative to 2007. The implicit price deflator of US GDP increased in every quarter from IVQ2007 to IVQ2012 with exception of decline from 94.986 in IVQ2008 to 94.938 in IIIQ2009 or by 0.1 percent (https://apps.bea.gov/iTable/index_nipa.cfm). Wars are characterized by rapidly rising prices followed by declines when peace is restored. The US economy is not plagued by deflation but by long-run inflation.
Chart I-3, US, GDP Implicit Price Deflator 1929-2019
Source: US Bureau of Economic Analysis
https://apps.bea.gov/iTable/index_nipa.cfm
Chart I-4 provides percent change from preceding quarter in prices of GDP at seasonally adjusted annual rates (SAAR) from 1980 to 2019. There is one case of negative change by 0.4 percent in IIQ2009 that was adjustment from 3.1 percent in IIIQ2008 following 1.8 percent in IQ2008 and 1.6 percent IIQ2008 caused by carry trades from policy interest rates being moved to zero into commodity futures. These positions were reversed because of the fear of toxic assets in banks in the proposal of TARP in late 2008 (Cochrane and Zingales 2009). Prices of GDP increased at 0.3 percent in IVQ2014. GDP prices changed at 0.0 percent in IQ2015, increasing at 2.4 percent in IIQ015 and at 1.2 percent in IIIQ2015. Prices of GDP changed at 0.0 percent in IVQ2015 and decreased at 0.2 percent in IQ2016. Prices of GDP changed at 2.6 percent in IIQ2016 and increased at 1.4 percent in IIIQ2016. Prices of GDP increased at 2.1 percent in IVQ2016 and increased at 1.9 percent in IQ2017. Prices of GDP increased at 1.3 percent in IIQ2017 and increased at 2.4 percent in IIIQ2017. Prices of GDP increased at 2.6 percent in IVQ2017 and increased at 2.3 percent in IQ2018. Prices of GDP increased at 3.2 percent in IIQ2018 and increased at 2.0 percent in IIIQ2018. Prices of GDP increased at 1.6 percent in IVQ2018 and increased at 1.1 percent in IQ2019. Prices of GDP increased at 2.4 percent in IIQ2019 and increased at 1.8 percent in IIIQ2019. Prices of GDP increased at 1.3 percent in IVQ2019 and increased at 1.4 percent in IQ2020. There has not been actual deflation or risk of deflation threatening depression in the US that would justify unconventional monetary policy.
Chart I-4, Percent Change from Preceding Period in Prices for GDP Seasonally Adjusted at Annual Rates 1980-2020
Source: US Bureau of Economic Analysis
https://apps.bea.gov/iTable/index_nipa.cfm
Chart I-5 provides percent change from preceding year in prices of GDP from 1929 to 2019. There are four consecutive years of declines of prices of GDP during the Great Depression: 3.9 percent in 1930, 9.9 percent in 1931, 11.4 percent in 1932 and 2.7 percent in 1933. There were two consecutive declines of 1.8 percent in 1938 and 1.3 percent in 1939. Prices of GDP changed 0.0 percent in 1949 after increasing 12.6 percent in 1946, 11.2 percent in 1947 and 5.7 percent in 1948, which is similar to experience with wars in other countries. There are no other negative changes of annual prices of GDP in 74 years from 1939 to 2019.
Chart I-5, Percent Change from Preceding Year in Prices for Gross Domestic Product 1930-2019
https://apps.bea.gov/iTable/index_nipa.cfm
The producer price index of the US from 1947 to 2020 in Chart I-6 shows various periods of more rapid or less rapid inflation but no bumps. The major event is the decline in 2008 when risk aversion because of the global recession caused the collapse of oil prices from $148/barrel to less than $80/barrel with most other commodity prices also collapsing. The event had nothing in common with explanations of deflation but rather with the concentration of risk exposures in commodities after the decline of stock market indexes. Eventually, there was a flight to government securities because of the fears of insolvency of banks caused by statements supporting proposals for withdrawal of toxic assets from bank balance sheets in the Troubled Asset Relief Program (TARP), as explained by Cochrane and Zingales (2009). The bump in 2008 with decline in 2009 is consistent with the view that zero interest rates with subdued risk aversion induce carry trades into commodity futures.
Chart I-6, US, Producer Price Index, Finished Goods, NSA, 1947-2020
Source: US Bureau of Labor Statistics
Chart I-7 provides 12-month percentage changes of the producer price index from 1948 to 2020. The distinguishing even in Chart I-7 is the Great Inflation of the 1970s. The shape of the two-hump Bactrian camel of the 1970’s resembles the double hump from 2007 to 2020.
Chart I-7, US, Producer Price Index, Finished Goods, 12-Month Percentage Change, NSA, 1948-2020
Source: US Bureau of Labor Statistics
Annual percentage changes of the producer price index from 1948 to 2019 are shown in Table I-1A. The producer price index fell 2.8 percent in 1949 following the adjustment to World War II and fell 0.6 percent in 1952 and 1.0 percent in 1953 around the Korean War. There are two other mild declines of 0.3 percent in 1959 and 0.3 percent in 1963. There are only few subsequent and isolated declines of the producer price index of 1.4 percent in 1986, 0.8 percent in 1998, 1.3 percent in 2002 and 2.6 percent in 2009. The decline of 2009 was caused by unwinding of carry trades in 2008 that had lifted oil prices to $140/barrel during deep global recession because of the panic of probable toxic assets in banks that would be removed with the Troubled Asset Relief Program (TARP) (Cochrane and Zingales 2009). Producer prices fell 3.2 percent in 2015 and declined 1.0 percent in 2016 during collapse of commodity prices form high prices induced by zero interest rates. Producer prices increased 3.2 percent in 2017 and increased 3.1 percent in 2018. Producer prices increased 0.8 percent in 2019. There is no evidence in this history of 66 years of the US producer price index suggesting that there is frequent and persistent deflation shock requiring aggressive unconventional monetary policy. The design of such anti-deflation policy could provoke price and financial instability because of lags in effect of monetary policy, model errors, inaccurate forecasts and misleading analysis of current economic conditions.
Table I-1A, US, Annual PPI Inflation ∆% 1948-2019
Year | Annual |
1948 | 8.0 |
1949 | -2.8 |
1950 | 1.8 |
1951 | 9.2 |
1952 | -0.6 |
1953 | -1.0 |
1954 | 0.3 |
1955 | 0.3 |
1956 | 2.6 |
1957 | 3.8 |
1958 | 2.2 |
1959 | -0.3 |
1960 | 0.9 |
1961 | 0.0 |
1962 | 0.3 |
1963 | -0.3 |
1964 | 0.3 |
1965 | 1.8 |
1966 | 3.2 |
1967 | 1.1 |
1968 | 2.8 |
1969 | 3.8 |
1970 | 3.4 |
1971 | 3.1 |
1972 | 3.2 |
1973 | 9.1 |
1974 | 15.4 |
1975 | 10.6 |
1976 | 4.5 |
1977 | 6.4 |
1978 | 7.9 |
1979 | 11.2 |
1980 | 13.4 |
1981 | 9.2 |
1982 | 4.1 |
1983 | 1.6 |
1984 | 2.1 |
1985 | 1.0 |
1986 | -1.4 |
1987 | 2.1 |
1988 | 2.5 |
1989 | 5.2 |
1990 | 4.9 |
1991 | 2.1 |
1992 | 1.2 |
1993 | 1.2 |
1994 | 0.6 |
1995 | 1.9 |
1996 | 2.7 |
1997 | 0.4 |
1998 | -0.8 |
1999 | 1.8 |
2000 | 3.8 |
2001 | 2.0 |
2002 | -1.3 |
2003 | 3.2 |
2004 | 3.6 |
2005 | 4.8 |
2006 | 3.0 |
2007 | 3.9 |
2008 | 6.3 |
2009 | -2.6 |
2010 | 4.2 |
2011 | 6.1 |
2012 | 1.9 |
2013 | 1.2 |
2014 | 1.9 |
2015 | -3.2 |
2016 | -1.0 |
2017 | 3.2 |
2018 | 3.1 |
2019 | 0.8 |
Source: US Bureau of Labor Statistics
The producer price index excluding food and energy from 1973 to 2020, the first historical date of availability in the dataset of the Bureau of Labor Statistics (BLS), shows similarly dynamic behavior as the overall index, as shown in Chart I-8. There is no evidence of persistent deflation in the US PPI.
Chart I-8, US Producer Price Index, Finished Goods Excluding Food and Energy, NSA, 1973-2020
Source: US Bureau of Labor Statistics
Chart I-9 provides 12-month percentage rates of change of the finished goods index excluding food and energy. The dominating characteristic is the Great Inflation of the 1970s. The double hump illustrates how inflation may appear to be subdued and then returns with strength.
Chart I-9, US Producer Price Index, Finished Goods Excluding Food and Energy, 12-Month Percentage Change, NSA, 1974-2020
Source: US Bureau of Labor Statistics
The producer price index of energy goods from 1974 to 2020 is in Chart I-10. The first jump occurred during the Great Inflation of the 1970s analyzed in various comments of this blog (http://cmpassocregulationblog.blogspot.com/2012/06/rules-versus-discretionary-authorities.html http://cmpassocregulationblog.blogspot.com/2011/05/slowing-growth-global-inflation-great.html http://cmpassocregulationblog.blogspot.com/2011/04/new-economics-of-rose-garden-turned.html http://cmpassocregulationblog.blogspot.com/2011/03/is-there-second-act-of-us-great.html) and in Appendix I. There is relative stability of producer prices after 1986 with another jump and decline in the late 1990s into the early 2000s. The episode of commodity price increases during a global recession in 2008 could only have occurred with interest rates dropping toward zero, which stimulated the carry trade from zero interest rates to leveraged positions in commodity futures. Commodity futures exposures were dropped in the flight to government securities after Sep 2008. Commodity future exposures were created again when risk aversion diminished around Mar 2010 after the finding that US bank balance sheets did not have the toxic assets that were mentioned in proposing TARP in Congress (see Cochrane and Zingales 2009). Fluctuations in commodity prices and other risk financial assets originate in carry trade when risk aversion ameliorates. There are also fluctuations originating in shifts in preference for asset classes such as between commodities and equities.
Chart I-10, US, Producer Price Index, Finished Energy Goods, NSA, 1974-2020
Source: US Bureau of Labor Statistics
Chart I-11 shows 12-month percentage changes of the producer price index of finished energy goods from 1975 to 2020. This index is only available after 1974 and captures only one of the humps of energy prices during the Great Inflation. Fluctuations in energy prices have occurred throughout history in the US but without provoking deflation. Two cases are the decline of oil prices in 2001 to 2002 that has been analyzed by Barsky and Kilian (2004) and the collapse of oil prices from over $140/barrel with shock of risk aversion to the carry trade in Sep 2008.
Chart I-11, US, Producer Price Index, Finished Energy Goods, 12-Month Percentage Change, NSA, 1974-2020
Source: US Bureau of Labor Statistics
Chart I-12 provides the consumer price index NSA from 1913 to 2020. The dominating characteristic is the increase in slope during the Great Inflation from the middle of the 1960s through the 1970s. There is long-term inflation in the US and no evidence of deflation risks.
Chart I-12, US, Consumer Price Index, NSA, 1913-2020
Source: US Bureau of Labor Statistics https://www.bls.gov/cpi/data.htm
Chart I-13 provides 12-month percentage changes of the consumer price index from 1914 to 2020. The only episode of deflation after 1950 is in 2009, which is explained by the reversal of speculative commodity futures carry trades that were induced by interest rates driven to zero in a shock of monetary policy in 2008. The only persistent case of deflation is from 1930 to 1933, which has little if any relevance to the contemporary United States economy. There are actually three waves of inflation in the second half of the 1960s, in the mid-1970s and again in the late 1970s. Inflation rates then stabilized in a range with only two episodes above 5 percent.
Chart I-13, US, Consumer Price Index, All Items, 12- Month Percentage Change 1914-2020
Source: US Bureau of Labor Statistics https://www.bls.gov/cpi/data.htm
Table I-2 provides annual percentage changes of United States consumer price inflation from 1914 to 2019. There have been only cases of annual declines of the CPI after wars:
- World War I minus 10.5 percent in 1921 and minus 6.1 percent in 1922 following cumulative increases of 83.5 percent in four years from 1917 to 1920 at the average of 16.4 percent per year
- World War II: minus 1.2 percent in 1949 following cumulative 33.9 percent in three years from 1946 to 1948 at average 10.2 percent per year
- Minus 0.4 percent in 1955 two years after the end of the Korean War
- Minus 0.4 percent in 2009.
- The decline of 0.4 percent in 2009 followed increase of 3.8 percent in 2008 and is explained by the reversal of speculative carry trades into commodity futures that were created in 2008 as monetary policy rates were driven to zero. The reversal occurred after misleading statement on toxic assets in banks in the proposal for TARP (Cochrane and Zingales 2009).
There were declines of 1.7 percent in both 1927 and 1928 during the episode of revival of rules of the gold standard. The only persistent deflationary period since 1914 was during the Great Depression in the years from 1930 to 1933 and again in 1938-1939. Consumer prices increased only 0.1 percent in 2015 because of the collapse of commodity prices from artificially high levels induced by zero interest rates. Consumer prices increased 1.3 percent in 2016, increasing at 2.1 percent in 2017. Consumer prices increased 2.4 percent in 2018, increasing at 1.8 percent in 2019. Fear of deflation based on that experience does not justify unconventional monetary policy of zero interest rates that has failed to stop deflation in Japan. Financial repression causes far more adverse effects on allocation of resources by distorting the calculus of risk/returns than alleged employment-creating effects or there would not be current recovery without jobs and hiring after zero interest rates since Dec 2008 and intended now forever in a self-imposed forecast growth and employment mandate of monetary policy. Unconventional monetary policy drives wide swings in allocations of positions into risk financial assets that generate instability instead of intended pursuit of prosperity without inflation. There is insufficient knowledge and imperfect tools to maintain the gap of actual relative to potential output constantly at zero while restraining inflation in an open interval of (1.99, 2.0). Symmetric targets appear to have been abandoned in favor of a self-imposed single jobs mandate of easing monetary policy even with the economy growing at or close to potential output that is actually a target of growth forecast. The impact on the overall economy and the financial system of errors of policy are magnified by large-scale policy doses of trillions of dollars of quantitative easing and zero interest rates. The US economy has been experiencing financial repression as a result of negative real rates of interest during nearly a decade and programmed in monetary policy statements until 2015 or, for practical purposes, forever. The essential calculus of risk/return in capital budgeting and financial allocations has been distorted. If economic perspectives are doomed until 2015 such as to warrant zero interest rates and open-ended bond-buying by “printing” digital bank reserves (http://cmpassocregulationblog.blogspot.com/2010/12/is-fed-printing-money-what-are.html; see Shultz et al 2012), rational investors and consumers will not invest and consume until just before interest rates are likely to increase. Monetary policy statements on intentions of zero interest rates for another three years or now virtually forever discourage investment and consumption or aggregate demand that can increase economic growth and generate more hiring and opportunities to increase wages and salaries. The doom scenario used to justify monetary policy accentuates adverse expectations on discounted future cash flows of potential economic projects that can revive the economy and create jobs. If it were possible to project the future with the central tendency of the monetary policy scenario and monetary policy tools do exist to reverse this adversity, why the tools have not worked before and even prevented the financial crisis? If there is such thing as “monetary policy science”, why it has such poor record and current inability to reverse production and employment adversity? There is no excuse of arguing that additional fiscal measures are needed because they were deployed simultaneously with similar ineffectiveness. Jon Hilsenrath, writing on “New view into Fed’s response to crisis,” on Feb 21, 2014, published in the Wall Street Journal (http://online.wsj.com/news/articles/SB10001424052702303775504579396803024281322?mod=WSJ_hp_LEFTWhatsNewsCollection), analyzes 1865 pages of transcripts of eight formal and six emergency policy meetings at the Fed in 2008 (http://www.federalreserve.gov/monetarypolicy/fomchistorical2008.htm). If there were an infallible science of central banking, models and forecasts would provide accurate information to policymakers on the future course of the economy in advance. Such forewarning is essential to central bank science because of the long lag between the actual impulse of monetary policy and the actual full effects on income and prices many months and even years ahead (Romer and Romer 2004, Friedman 1961, 1953, Culbertson 1960, 1961, Batini and Nelson 2002). Jon Hilsenrath, writing on “New view into Fed’s response to crisis,” on Feb 21, 2014, published in the Wall Street Journal (http://online.wsj.com/news/articles/SB10001424052702303775504579396803024281322?mod=WSJ_hp_LEFTWhatsNewsCollection), analyzed 1865 pages of transcripts of eight formal and six emergency policy meetings at the Fed in 2008 (http://www.federalreserve.gov/monetarypolicy/fomchistorical2008.htm). Jon Hilsenrath demonstrates that Fed policymakers frequently did not understand the current state of the US economy in 2008 and much less the direction of income and prices. The conclusion of Friedman (1953) that monetary impulses increase financial and economic instability because of lags in anticipating needs of policy, taking policy decisions and effects of decisions. This a fortiori true when untested unconventional monetary policy in gargantuan doses shocks the economy and financial markets.
Table I-2, US, Annual CPI Inflation ∆% 1914-2019
Year | Annual ∆% |
1914 | 1.0 |
1915 | 1.0 |
1916 | 7.9 |
1917 | 17.4 |
1918 | 18.0 |
1919 | 14.6 |
1920 | 15.6 |
1921 | -10.5 |
1922 | -6.1 |
1923 | 1.8 |
1924 | 0.0 |
1925 | 2.3 |
1926 | 1.1 |
1927 | -1.7 |
1928 | -1.7 |
1929 | 0.0 |
1930 | -2.3 |
1931 | -9.0 |
1932 | -9.9 |
1933 | -5.1 |
1934 | 3.1 |
1935 | 2.2 |
1936 | 1.5 |
1937 | 3.6 |
1938 | -2.1 |
1939 | -1.4 |
1940 | 0.7 |
1941 | 5.0 |
1942 | 10.9 |
1943 | 6.1 |
1944 | 1.7 |
1945 | 2.3 |
1946 | 8.3 |
1947 | 14.4 |
1948 | 8.1 |
1949 | -1.2 |
1950 | 1.3 |
1951 | 7.9 |
1952 | 1.9 |
1953 | 0.8 |
1954 | 0.7 |
1955 | -0.4 |
1956 | 1.5 |
1957 | 3.3 |
1958 | 2.8 |
1959 | 0.7 |
1960 | 1.7 |
1961 | 1.0 |
1962 | 1.0 |
1963 | 1.3 |
1964 | 1.3 |
1965 | 1.6 |
1966 | 2.9 |
1967 | 3.1 |
1968 | 4.2 |
1969 | 5.5 |
1970 | 5.7 |
1971 | 4.4 |
1972 | 3.2 |
1973 | 6.2 |
1974 | 11.0 |
1975 | 9.1 |
1976 | 5.8 |
1977 | 6.5 |
1978 | 7.6 |
1979 | 11.3 |
1980 | 13.5 |
1981 | 10.3 |
1982 | 6.2 |
1983 | 3.2 |
1984 | 4.3 |
1985 | 3.6 |
1986 | 1.9 |
1987 | 3.6 |
1988 | 4.1 |
1989 | 4.8 |
1990 | 5.4 |
1991 | 4.2 |
1992 | 3.0 |
1993 | 3.0 |
1994 | 2.6 |
1995 | 2.8 |
1996 | 3.0 |
1997 | 2.3 |
1998 | 1.6 |
1999 | 2.2 |
2000 | 3.4 |
2001 | 2.8 |
2002 | 1.6 |
2003 | 2.3 |
2004 | 2.7 |
2005 | 3.4 |
2006 | 3.2 |
2007 | 2.8 |
2008 | 3.8 |
2009 | -0.4 |
2010 | 1.6 |
2011 | 3.2 |
2012 | 2.1 |
2013 | 1.5 |
2014 | 1.6 |
2015 | 0.1 |
2016 | 1.3 |
2017 | 2.1 |
2018 | 2.4 |
2019 | 1.8 |
Source: US Bureau of Labor Statistics https://www.bls.gov/cpi/data.htm
Chart I-14 provides the consumer price index excluding food and energy from 1957 to 2020. There is long-term inflation in the US without episodes of persistent deflation.
Chart I-14, US, Consumer Price Index Excluding Food and Energy, NSA, 1957-2020
Source: US Bureau of Labor Statistics https://www.bls.gov/cpi/data.htm
Chart I-15 provides 12-month percentage changes of the consumer price index excluding food and energy from 1958 to 2020. There are three waves of inflation in the 1970s during the Great Inflation. There is no episode of deflation.
Chart I-15, US, Consumer Price Index Excluding Food and Energy, 12-Month Percentage Change, NSA, 1958-2020
Source: US Bureau of Labor Statistics https://www.bls.gov/cpi/data.htm
The consumer price index of housing is in Chart I-16. There was also acceleration during the Great Inflation of the 1970s. The index flattens after the global recession in IVQ2007 to IIQ2009. Housing prices collapsed under the weight of construction of several times more housing than needed. Surplus housing originated in subsidies and artificially low interest rates in the shock of unconventional monetary policy in 2003 to 2004 in fear of deflation.
Chart I-16, US, Consumer Price Index Housing, NSA, 1967-2020
Source: US Bureau of Labor Statistics https://www.bls.gov/cpi/data.htm
Chart I-17 provides 12-month percentage changes of the housing CPI. The Great Inflation also had extremely high rates of housing inflation. Housing is considered as potential hedge of inflation.
Chart I-17, US, Consumer Price Index, Housing, 12- Month Percentage Change, NSA, 1968-2020
Source: US Bureau of Labor Statistics https://www.bls.gov/cpi/data.htm
ID Current US Inflation. Consumer price inflation has fluctuated in recent months. Table I-3 provides 12-month consumer price inflation in May 2020 and annual equivalent percentage changes for the months from Mar 2020 to May 2020 of the CPI and major segments. The final column provides inflation from Apr 2020 to May 2020. CPI inflation increased 0.1 percent in the 12 months ending in May 2020. The annual equivalent rate from Mar 2020 to May 2020 was minus 5.1 percent in the new episode of reversal and renewed positions of carry trades from zero interest rates to commodities exposures; and the monthly inflation rate of minus 0.1 percent annualizes at minus 1.2 percent with oscillating carry trades at the margin. These inflation rates fluctuate in accordance with inducement of risk appetite or frustration by risk aversion of carry trades from zero interest rates to commodity futures. At the margin, the decline in commodity prices in sharp recent risk aversion in commodities markets caused lower inflation worldwide (with return in some countries in Dec 2012 and Jan-Feb 2013) that followed a jump in Aug-Sep 2012 because of the relaxed risk aversion resulting from the bond-buying program of the European Central Bank or Outright Monetary Transactions (OMT) (https://www.ecb.europa.eu/press/pr/date/2012/html/pr120906_1.en.html). Carry trades moved away from commodities into stocks with resulting weaker commodity prices and stronger equity valuations. There is reversal of exposures in commodities but with preferences of equities by investors. Geopolitical events in Eastern Europe and the Middle East together with economic conditions worldwide are inducing risk concerns in commodities at the margin. With zero or very low interest rates, commodity prices would increase again in an environment of risk appetite, as shown in past oscillating inflation. Excluding food and energy, core CPI inflation was 1.2 percent in the 12 months ending in May 2020 and minus 2.4 percent in annual equivalent from Mar 2020 to May 2020. There is no deflation in the US economy that could justify further unconventional monetary policy, which is now open-ended or forever with very low interest rates and cessation of bond-buying by the central bank but with reinvestment of interest and principal, or QE→∞ even if the economy grows back to potential. The FOMC is engaging in renewed increases in the Fed balance sheet. Financial repression of very low interest rates is now intended as a permanent distortion of resource allocation by clouding risk/return decisions, preventing the economy from expanding along its optimal growth path. The FOMC had engaged in recent increases of purchases of securities after reducing interest rates in the global recession, with output in the US reaching a high in Feb 2020 (https://www.nber.org/cycles.html), in the lockdown of economic activity in the COVID-19 event. Consumer food prices in the US increased 4.0 percent in 12 months ending in May 2020 and changed at 10.5 percent in annual equivalent from Mar 2020 to May 2020. Monetary policies stimulating carry trades of commodities futures that increase prices of food constitute a highly regressive tax on lower income families for whom food is a major portion of the consumption basket especially with wage increases below inflation in a recovery without hiring (https://cmpassocregulationblog.blogspot.com/2020/06/global-recession-with-output-in-us.html and earlier https://cmpassocregulationblog.blogspot.com/2020/05/recovery-without-hiring-twenty-million.html). Energy consumer prices decreased 18.9 percent in 12 months, decreased at 52.2 percent in annual equivalent from Mar 2020 to May 2020 and decreased 1.8 percent in May 2020 or at minus 19.6 percent in annual equivalent. Waves of inflation are induced by carry trades from zero interest rates to commodity futures, which are unwound and repositioned during alternating risk aversion and risk appetite originating in the European debt crisis and increasingly in growth, soaring debt and politics in China. For lower income families, food and energy are a major part of the family budget. Inflation is not persistently low or threatening deflation in annual equivalent in any of the categories in Table I-2 but simply reflecting waves of inflation originating in carry trades. Zero interest rates induce carry trades into commodity futures positions with episodes of risk aversion and portfolio reallocations causing fluctuations that determine an upward trend of prices.
Table I-3, US, Consumer Price Index Percentage Changes 12 months NSA and Annual Equivalent ∆%
% RI | ∆% 12 Months May 2020/May | ∆% Annual Equivalent Mar 2020 to May 2020 SA | ∆% May 2020/Apr 2020 SA | |
CPI All Items | 100.000 | 0.1 | -5.1 | -0.1 |
CPI ex Food and Energy | 80.052 | 1.2 | -2.4 | -0.1 |
Food | 14.170 | 4.0 | 10.5 | 0.7 |
Food at Home | 7.910 | 4.8 | 17.6 | 1.0 |
Food Away from Home | 6.260 | 2.9 | 2.8 | 0.4 |
Energy | 5.777 | -18.9 | -52.2 | -1.8 |
Gasoline | 2.486 | -33.8 | -77.8 | -3.5 |
Electricity | 2.425 | -0.2 | -3.5 | -0.8 |
Commodities less Food and Energy | 20.281 | -1.0 | -4.7 | -0.2 |
New Vehicles | 3.763 | -0.3 | -0.4 | 0.3 |
Used Cars and Trucks | 2.581 | -0.4 | 0.0 | -0.4 |
Medical Care Commodities | 1.631 | 0.8 | 0.0 | 0.1 |
Apparel | 2.799 | -7.9 | -30.7 | -2.3 |
Services Less Energy Services | 59.771 | 2.0 | -1.6 | 0.0 |
Shelter | 33.518 | 2.5 | 0.8 | 0.2 |
Rent of Primary Residence | 7.887 | 3.5 | 3.2 | 0.3 |
Owner’s Equivalent Rent of Residences | 24.333 | 3.1 | 3.2 | 0.3 |
Transportation Services | 5.128 | -8.7 | -34.0 | -3.6 |
Medical Care Services | 7.350 | 5.9 | 6.6 | 0.6 |
% RI: Percent Relative Importance
Source: US Bureau of Labor Statistics https://www.bls.gov/cpi/
Table I-4 provides weights of components in the consumer price of the US in Dec 2012. Housing has a weight of 41.021 percent. The combined weight of housing and transportation is 57.867 percent or more than one-half of consumer expenditures of all urban consumers. The combined weight of housing, transportation and food and beverages is 73.128 percent of the US CPI. Table I-3 provides relative importance of key items in May 2020.
Table I-4, US, Relative Importance, 2009-2010 Weights, of Components in the Consumer Price Index, US City Average, Dec 2012
All Items | 100.000 |
Food and Beverages | 15.261 |
Food | 14.312 |
Food at home | 8.898 |
Food away from home | 5.713 |
Housing | 41.021 |
Shelter | 31.681 |
Rent of primary residence | 6.545 |
Owners’ equivalent rent | 22.622 |
Apparel | 3.564 |
Transportation | 16.846 |
Private Transportation | 15.657 |
New vehicles | 3.189 |
Used cars and trucks | 1.844 |
Motor fuel | 5.462 |
Gasoline | 5.274 |
Medical Care | 7.163 |
Medical care commodities | 1.714 |
Medical care services | 5.448 |
Recreation | 5.990 |
Education and Communication | 6.779 |
Other Goods and Services | 3.376 |
Refers to all urban consumers, covering approximately 87 percent of the US population (see http://www.bls.gov/cpi/cpiovrvw.htm#item1). Source: US Bureau of Labor Statistics http://www.bls.gov/cpi/cpiri2011.pdf http://www.bls.gov/cpi/cpiriar.htm http://www.bls.gov/cpi/cpiri2012.pdf
Chart I-18 provides the US consumer price index for housing from 2001 to 2020. Housing prices rose sharply during the decade until the bump of the global recession and increased again in 2011-2012 with some stabilization in 2013. There is renewed increase in 2014 followed by stabilization and renewed increase in 2015-2020. The CPI excluding housing would likely show much higher inflation. The commodity carry trades resulting from unconventional monetary policy have compressed income remaining after paying for indispensable shelter.
Chart I-18, US, Consumer Price Index, Housing, NSA, 2001-2020
Source: US Bureau of Labor Statistics https://www.bls.gov/cpi/data.htm
Chart I-19 provides 12-month percentage changes of the housing CPI. Percentage changes collapsed during the global recession but have been rising into positive territory in 2011 and 2012-2013 but with the rate declining and then increasing into 2014. There is decrease into 2015 followed by stability and marginal increase in 2016-2020 followed by initial decline in the global recession, with output in the US reaching a high in Feb 2020 (https://www.nber.org/cycles.html), in the lockdown of economic activity in the COVID-19 event.
Chart I-19, US, Consumer Price Index, Housing, 12-Month Percentage Change, NSA, 2001-2020
Source: US Bureau of Labor Statistics
https://www.bls.gov/cpi/data.htm
There have been waves of consumer price inflation in the US in 2011 and into 2020 (https://cmpassocregulationblog.blogspot.com/2020/05/mediocre-cyclical-united-states_31.html and earlier https://cmpassocregulationblog.blogspot.com/2020/04/valuations-of-risk-financial-assets.html and earlier https://cmpassocregulationblog.blogspot.com/2020/03/weekly-rise-of-valuations-of-risk.html) that are illustrated in Table I-5. The first wave occurred in Jan-Apr 2011 and was caused by the carry trade of commodity prices induced by unconventional monetary policy of zero interest rates. Cheap money at zero opportunity cost in environment of risk appetite was channeled into financial risk assets, causing increases in commodity prices. The annual equivalent rate of increase of the all-items CPI in Jan-Apr 2011 was 4.9 percent and the CPI excluding food and energy increased at annual equivalent rate of 1.8 percent. The second wave occurred during the collapse of the carry trade from zero interest rates to exposures in commodity futures because of risk aversion in financial markets created by the sovereign debt crisis in Europe. The annual equivalent rate of increase of the all-items CPI dropped to 1.8 percent in May-Jun 2011 while the annual equivalent rate of the CPI excluding food and energy increased at 2.4 percent. In the third wave in Jul-Sep 2011, annual equivalent CPI inflation rose to 3.2 percent while the core CPI increased at 2.4 percent. The fourth wave occurred in the form of increase of the CPI all-items annual equivalent rate to 1.8 percent in Oct-Nov 2011 with the annual equivalent rate of the CPI excluding food and energy remaining at 2.4 percent. The fifth wave occurred in Dec 2011 to Jan 2012 with annual equivalent headline inflation of 1.8 percent and core inflation of 2.4 percent. In the sixth wave, headline CPI inflation increased at annual equivalent 2.4 percent in Feb-Apr 2012 and 2.0 percent for the core CPI. The seventh wave in May-Jul occurred with annual equivalent inflation of minus 1.2 percent for the headline CPI in May-Jul 2012 and 2.0 percent for the core CPI. The eighth wave is with annual equivalent inflation of 6.8 percent in Aug-Sep 2012 but 5.7 percent including Oct. In the ninth wave, annual equivalent inflation in Nov 2012 was minus 2.4 percent under the new shock of risk aversion and 0.0 percent in Dec 2012 with annual equivalent of 0.0 percent in Nov 2012-Jan 2013 and 2.0 percent for the core CPI. In the tenth wave, annual equivalent of the headline CPI was 6.2 percent in Feb 2013 and 1.2 percent for the core CPI. In the eleventh wave, annual equivalent was minus 3.0 percent in Mar-Apr 2013 and 0.6 percent for the core index. In the twelfth wave, annual equivalent inflation was 1.4 percent in May-Sep 2013 and 2.2 percent for the core CPI. In the thirteenth wave, annual equivalent CPI inflation in Oct-Nov 2013 was 1.8 percent and 1.8 percent for the core CPI. Inflation returned in the fourteenth wave at 2.4 percent for the headline CPI index and 1.8 percent for the core CPI in annual equivalent for Dec 2013 to Mar 2014. In the fifteenth wave, inflation moved to annual equivalent 1.8 percent for the headline index in Apr-Jul 2014 and 2.1 percent for the core index. In the sixteenth wave, annual equivalent inflation was 0.0 percent in Aug 2014 and 1.2 percent for the core index. In the seventeenth wave, annual equivalent inflation was 0.0 percent for the headline CPI and 2.4 percent for the core in Sep-Oct 2014. In the eighteenth wave, annual equivalent inflation was minus 4.3 percent for the headline index in Nov 2014-Jan 2015 and 1.2 percent for the core. In the nineteenth wave, annual equivalent inflation was 3.2 percent for the headline index and 2.2 percent for the core index in Feb-Jun 2015. In the twentieth wave, annual equivalent inflation was at 2.4 percent in Jul 2015 for the headline and core indexes. In the twenty-first wave, headline consumer prices decreased at 1.2 percent in annual equivalent in Aug-Sep 2015 while core prices increased at annual equivalent 1.8 percent. In the twenty-second wave, consumer prices increased at annual equivalent 1.2 percent for the central index and 2.4 percent for the core in Oct-Nov 2015. In the twenty-third wave, annual equivalent inflation was minus 0.6 percent for the headline CPI in Dec 2015 to Jan 2016 and 1.8 percent for the core. In the twenty-fourth wave, annual equivalent was minus 1.2 percent and 2.4 percent for the core in Feb 2016. In the twenty-fifth wave, annual equivalent inflation was at 3.7 percent for the central index in Mar-Apr 2016 and at 1.8 percent for the core index. In the twenty-sixth wave, annual equivalent inflation was 3.7 percent for the central CPI in May-Jun 2016 and 2.4 percent for the core CPI. In the twenty-seventh wave, annual equivalent inflation was 0.0 percent for the central CPI and 1.2 percent for the core in Jul 2016. In the twenty-eighth wave, annual equivalent inflation was 2.4 percent for the headline CPI in Aug 2016 and 2.4 percent for the core. In the twenty-ninth wave, CPI prices increased at annual equivalent 2.4 percent in Sep-Oct 2016 while the core CPI increased at 1.2 percent. In the thirtieth wave, annual equivalent CPI prices increased at 2.4 percent in Nov-Dec 2016 while the core CPI increased at 2.4 percent. In the thirty-first wave, CPI prices increased at annual equivalent 4.9 percent in Jan 2017 while the core index increased at 2.4 percent. In the thirty-second wave, CPI prices changed at annual equivalent 1.2 percent in Feb 2017 while the core increased at 2.4 percent. In the thirty-third wave, CPI prices decreased at annual equivalent 1.2 percent in Mar 2017 while the core index changed at 0.0 percent. In the thirty-fourth wave, CPI prices increased at 1.2 percent annual equivalent in Apr 2017 while the core index increased at 1.2 percent. In the thirty-fifth wave, CPI prices changed at 0.0 annual equivalent in May-Jun 2017 while core prices increased at 1.2 percent. In the thirty-sixth wave, CPI prices increased at annual equivalent 1.2 percent in Jul 2017 while core prices increased at 1.2 percent. In the thirty-seventh wave, CPI prices increased at annual equivalent 5.5 percent in Aug-Sep 2017 while core prices increased at 1.8 percent. In the thirty-eighth wave, CPI prices increased at 2.4 percent annual equivalent in Oct-Nov 2017 while core prices increased at 2.4 percent. In the thirty-ninth wave, CPI prices increased at 3.7 percent annual equivalent in Dec 2017-Feb 2018 while core prices increased at 2.8 percent. In the fortieth wave, CPI prices changed at 0.0 percent annual equivalent in Mar 2018 while core prices increased at 2.4 percent. In the forty-first wave, CPI prices increased at 3.0 percent annual equivalent in Apr-May 2018 while core prices increased at 2.4 percent. In the forty-second wave, CPI prices increased at 1.8 percent in Jun-Sep 2018 while core prices increased at 1.8 percent. In the forty-third wave, CPI prices increased at annual equivalent 2.4 percent in Oct 2018 while core prices increased at 1.2 percent. In the forty-fourth wave, CPI prices changed at 0.0 percent annual equivalent in Nov 2018-Jan 2019 while core prices increased at 2.4 percent. In the forty-fifth wave, CPI prices increased at 3.7 percent annual equivalent in Feb-Apr 2019 while core prices increased at 2.0 percent. In the forty-sixth wave, CPI prices increased at 1.2 percent annual equivalent in May-Jun 2019 while core prices increased at 2.4 percent. In the forty-seventh wave, CPI prices increased at 3.7 percent annual equivalent in Jul 2019 while core prices increased at 3.7 percent. In the forty-eighth wave, CPI prices increased at 1.2 percent annual equivalent in Aug-Sep 2019 while core prices increased at 2.4 percent. In the forty-ninth wave, CPI prices increased at 2.4 percent annual equivalent in Oct-Dec 2019 while core prices increased at 1.6 percent. In the fiftieth wave, CPI prices increased at 1.2 percent annual equivalent in Jan-Feb 2020 and core prices at 2.4 percent. In the fifty-first wave, CPI prices decreased at annual equivalent 5.1 percent in Mar-May 2020 while core prices decreased at 2.4 percent. The conclusion is that inflation accelerates and decelerates in unpredictable fashion because of shocks or risk aversion and portfolio reallocations in carry trades from zero interest rates to commodity derivatives.
Table I-5, US, Headline and Core CPI Inflation Monthly SA and 12 Months NSA ∆%
All Items SA Month | All Items NSA 12 month | Core SA | Core NSA | |
May 2020 | -0.1 | 0.1 | -0.1 | 1.2 |
Apr | -0.8 | 0.3 | -0.4 | 1.4 |
Mar | -0.4 | 1.5 | -0.1 | 2.1 |
AE ∆% Mar-May | -5.1 | -2.4 | ||
Feb | 0.1 | 2.3 | 0.2 | 2.4 |
Jan | 0.1 | 2.5 | 0.2 | 2.3 |
AE ∆% Jan-Feb | 1.2 | 2.4 | ||
Dec 2019 | 0.2 | 2.3 | 0.1 | 2.3 |
Nov | 0.2 | 2.1 | 0.2 | 2.3 |
Oct | 0.2 | 1.8 | 0.1 | 2.3 |
AE ∆% Oct-Dec | 2.4 | 1.6 | ||
Sep | 0.1 | 1.7 | 0.2 | 2.4 |
Aug | 0.1 | 1.7 | 0.2 | 2.4 |
AE ∆% Aug-Sep | 1.2 | 2.4 | ||
Jul | 0.3 | 1.8 | 0.3 | 2.2 |
AE ∆% Jul | 3.7 | 3.7 | ||
Jun | 0.1 | 1.6 | 0.3 | 2.1 |
May | 0.1 | 1.8 | 0.1 | 2.0 |
AE ∆% May-Jun | 1.2 | 2.4 | ||
Apr | 0.3 | 2.0 | 0.2 | 2.1 |
Mar | 0.4 | 1.9 | 0.2 | 2.0 |
Feb | 0.2 | 1.5 | 0.1 | 2.1 |
AE ∆% Feb-Apr | 3.7 | 2.0 | ||
Jan | 0.0 | 1.6 | 0.2 | 2.2 |
Dec 2018 | 0.0 | 1.9 | 0.2 | 2.2 |
Nov | 0.0 | 2.2 | 0.2 | 2.2 |
AE ∆% Nov-Jan | 0.0 | 2.4 | ||
Oct | 0.2 | 2.5 | 0.1 | 2.1 |
AE ∆% Oct | 2.4 | 1.2 | ||
Sep | 0.1 | 2.3 | 0.2 | 2.2 |
Aug | 0.2 | 2.7 | 0.1 | 2.2 |
Jul | 0.1 | 2.9 | 0.2 | 2.4 |
Jun | 0.2 | 2.9 | 0.1 | 2.3 |
AE ∆% Jun-Sep | 1.8 | 1.8 | ||
May | 0.3 | 2.8 | 0.2 | 2.2 |
Apr | 0.2 | 2.5 | 0.2 | 2.1 |
AE ∆% Apr-May | 3.0 | 2.4 | ||
Mar | 0.0 | 2.4 | 0.2 | 2.1 |
AE ∆% Mar | 0.0 | 2.4 | ||
Feb | 0.3 | 2.2 | 0.2 | 1.8 |
Jan | 0.4 | 2.1 | 0.3 | 1.8 |
Dec 2017 | 0.2 | 2.1 | 0.2 | 1.8 |
AE ∆% Dec-Feb | 3.7 | 2.8 | ||
Nov | 0.3 | 2.2 | 0.1 | 1.7 |
Oct | 0.1 | 2.0 | 0.3 | 1.8 |
AE ∆% Oct-Nov | 2.4 | 2.4 | ||
Sep | 0.5 | 2.2 | 0.1 | 1.7 |
Aug | 0.4 | 1.9 | 0.2 | 1.7 |
AE ∆% Aug-Sep | 5.5 | 1.8 | ||
Jul | 0.1 | 1.7 | 0.1 | 1.7 |
AE ∆% Jul | 1.2 | 1.2 | ||
Jun | 0.1 | 1.6 | 0.1 | 1.7 |
May | -0.1 | 1.9 | 0.1 | 1.7 |
AE ∆% May-Jun | 0.0 | 1.2 | ||
Apr | 0.1 | 2.2 | 0.1 | 1.9 |
AE ∆% Apr | 1.2 | 1.2 | ||
Mar | -0.1 | 2.4 | 0.0 | 2.0 |
AE ∆% Mar | -1.2 | 0.0 | ||
Feb | 0.1 | 2.7 | 0.2 | 2.2 |
AE ∆% Feb | 1.2 | 2.4 | ||
Jan | 0.4 | 2.5 | 0.2 | 2.3 |
AE ∆% Jan | 4.9 | 2.4 | ||
Dec 2016 | 0.3 | 2.1 | 0.2 | 2.2 |
Nov | 0.1 | 1.7 | 0.2 | 2.1 |
AE ∆% Nov-Dec | 2.4 | 2.4 | ||
Oct | 0.2 | 1.6 | 0.1 | 2.1 |
Sep | 0.2 | 1.5 | 0.1 | 2.2 |
AE ∆% Sep-Oct | 2.4 | 1.2 | ||
Aug | 0.2 | 1.1 | 0.2 | 2.3 |
AE ∆ Aug | 2.4 | 2.4 | ||
Jul | 0.0 | 0.8 | 0.1 | 2.2 |
AE ∆% Jul | 0.0 | 1.2 | ||
Jun | 0.3 | 1.0 | 0.2 | 2.2 |
May | 0.3 | 1.0 | 0.2 | 2.2 |
AE ∆% May-Jun | 3.7 | 2.4 | ||
Apr | 0.4 | 1.1 | 0.2 | 2.1 |
Mar | 0.2 | 0.9 | 0.1 | 2.2 |
AE ∆% Mar-Apr | 3.7 | 1.8 | ||
Feb | -0.1 | 1.0 | 0.2 | 2.3 |
AE ∆% Feb | -1.2 | 2.4 | ||
Jan | 0.0 | 1.4 | 0.2 | 2.2 |
Dec 2015 | -0.1 | 0.7 | 0.1 | 2.1 |
AE ∆% Dec-Jan | -0.6 | 1.8 | ||
Nov | 0.1 | 0.5 | 0.2 | 2.0 |
Oct | 0.1 | 0.2 | 0.2 | 1.9 |
AE ∆% Oct-Nov | 1.2 | 2.4 | ||
Sep | -0.2 | 0.0 | 0.2 | 1.9 |
Aug | 0.0 | 0.2 | 0.1 | 1.8 |
AE ∆% Aug-Sep | -1.2 | 1.8 | ||
Jul | 0.2 | 0.2 | 0.2 | 1.8 |
AE ∆% Jul | 2.4 | 2.4 | ||
Jun | 0.3 | 0.1 | 0.2 | 1.8 |
May | 0.3 | 0.0 | 0.1 | 1.7 |
Apr | 0.1 | -0.2 | 0.2 | 1.8 |
Mar | 0.3 | -0.1 | 0.2 | 1.8 |
Feb | 0.3 | 0.0 | 0.2 | 1.7 |
AE ∆% Feb-Jun | 3.2 | 2.2 | ||
Jan | -0.6 | -0.1 | 0.1 | 1.6 |
Dec 2014 | -0.3 | 0.8 | 0.1 | 1.6 |
Nov | -0.2 | 1.3 | 0.1 | 1.7 |
AE ∆% Nov-Jan | -4.3 | 1.2 | ||
Oct | 0.0 | 1.7 | 0.2 | 1.8 |
Sep | 0.0 | 1.7 | 0.2 | 1.7 |
AE ∆% Sep-Oct | 0.0 | 2.4 | ||
Aug | 0.0 | 1.7 | 0.1 | 1.7 |
AE ∆% Aug | 0.0 | 1.2 | ||
Jul | 0.1 | 2.0 | 0.2 | 1.9 |
Jun | 0.1 | 2.1 | 0.1 | 1.9 |
May | 0.2 | 2.1 | 0.2 | 2.0 |
Apr | 0.2 | 2.0 | 0.2 | 1.8 |
AE ∆% Apr-Jul | 1.8 | 2.1 | ||
Mar | 0.2 | 1.5 | 0.2 | 1.7 |
Feb | 0.1 | 1.1 | 0.1 | 1.6 |
Jan | 0.2 | 1.6 | 0.1 | 1.6 |
Dec 2013 | 0.3 | 1.5 | 0.2 | 1.7 |
AE ∆% Dec-Mar | 2.4 | 1.8 | ||
Nov | 0.2 | 1.2 | 0.2 | 1.7 |
Oct | 0.1 | 1.0 | 0.1 | 1.7 |
AE ∆% Oct-Nov | 1.8 | 1.8 | ||
Sep | 0.0 | 1.2 | 0.2 | 1.7 |
Aug | 0.2 | 1.5 | 0.2 | 1.8 |
Jul | 0.2 | 2.0 | 0.2 | 1.7 |
Jun | 0.2 | 1.8 | 0.2 | 1.6 |
May | 0.0 | 1.4 | 0.1 | 1.7 |
AE ∆% May-Sep | 1.4 | 2.2 | ||
Apr | -0.2 | 1.1 | 0.0 | 1.7 |
Mar | -0.3 | 1.5 | 0.1 | 1.9 |
AE ∆% Mar-Apr | -3.0 | 0.6 | ||
Feb | 0.5 | 2.0 | 0.1 | 2.0 |
AE ∆% Feb | 6.2 | 1.2 | ||
Jan | 0.2 | 1.6 | 0.2 | 1.9 |
Dec 2012 | 0.0 | 1.7 | 0.2 | 1.9 |
Nov | -0.2 | 1.8 | 0.1 | 1.9 |
AE ∆% Nov-Jan | 0.0 | 2.0 | ||
Oct | 0.3 | 2.2 | 0.2 | 2.0 |
Sep | 0.5 | 2.0 | 0.2 | 2.0 |
Aug | 0.6 | 1.7 | 0.1 | 1.9 |
AE ∆% Aug-Oct | 5.7 | 2.0 | ||
Jul | 0.0 | 1.4 | 0.2 | 2.1 |
Jun | -0.1 | 1.7 | 0.2 | 2.2 |
May | -0.2 | 1.7 | 0.1 | 2.3 |
AE ∆% May-Jul | -1.2 | 2.0 | ||
Apr | 0.2 | 2.3 | 0.2 | 2.3 |
Mar | 0.2 | 2.7 | 0.2 | 2.3 |
Feb | 0.2 | 2.9 | 0.1 | 2.2 |
AE ∆% Feb-Apr | 2.4 | 2.0 | ||
Jan | 0.3 | 2.9 | 0.2 | 2.3 |
Dec 2011 | 0.0 | 3.0 | 0.2 | 2.2 |
AE ∆% Dec-Jan | 1.8 | 2.4 | ||
Nov | 0.2 | 3.4 | 0.2 | 2.2 |
Oct | 0.1 | 3.5 | 0.2 | 2.1 |
AE ∆% Oct-Nov | 1.8 | 2.4 | ||
Sep | 0.2 | 3.9 | 0.1 | 2.0 |
Aug | 0.3 | 3.8 | 0.3 | 2.0 |
Jul | 0.3 | 3.6 | 0.2 | 1.8 |
AE ∆% Jul-Sep | 3.2 | 2.4 | ||
Jun | 0.0 | 3.6 | 0.2 | 1.6 |
May | 0.3 | 3.6 | 0.2 | 1.5 |
AE ∆% May-Jun | 1.8 | 2.4 | ||
Apr | 0.5 | 3.2 | 0.1 | 1.3 |
Mar | 0.5 | 2.7 | 0.1 | 1.2 |
Feb | 0.3 | 2.1 | 0.2 | 1.1 |
Jan | 0.3 | 1.6 | 0.2 | 1.0 |
AE ∆% Jan-Apr | 4.9 | 1.8 | ||
Dec 2010 | 0.4 | 1.5 | 0.1 | 0.8 |
Nov | 0.3 | 1.1 | 0.1 | 0.8 |
Oct | 0.3 | 1.2 | 0.1 | 0.6 |
Sep | 0.2 | 1.1 | 0.1 | 0.8 |
Aug | 0.1 | 1.1 | 0.1 | 0.9 |
Jul | 0.2 | 1.2 | 0.1 | 0.9 |
Jun | 0.0 | 1.1 | 0.1 | 0.9 |
May | -0.1 | 2.0 | 0.1 | 0.9 |
Apr | 0.0 | 2.2 | 0.0 | 0.9 |
Mar | 0.0 | 2.3 | 0.0 | 1.1 |
Feb | -0.1 | 2.1 | 0.0 | 1.3 |
Jan | 0.1 | 2.6 | -0.1 | 1.6 |
Note: Core: excluding food and energy; AE: annual equivalent
Source: US Bureau of Labor Statistics https://www.bls.gov/cpi/
The behavior of the US consumer price index NSA from 2001 to 2020 is in Chart I-20. Inflation in the US is very dynamic without deflation risks that would justify symmetric inflation targets. The hump in 2008 originated in the carry trade from interest rates dropping to zero into commodity futures. There is no other explanation for the increase of the Cushing OK Crude Oil Future Contract 1 from $55.64/barrel on Jan 9, 2007 to $145.29/barrel on July 3, 2008 during deep global recession, collapsing under a panic of flight into government obligations and the US dollar to $37.51/barrel on Feb 13, 2009 and then rising by carry trades to $113.93/barrel on Apr 29, 2012, collapsing again and then recovering again to $105.23/barrel, all during mediocre economic recovery with peaks and troughs influenced by bouts of risk appetite and risk aversion (data from the US Energy Information Administration EIA, https://www.eia.gov/). The unwinding of the carry trade with the TARP announcement of toxic assets in banks channeled cheap money into government obligations (see Cochrane and Zingales 2009).
Chart I-20, US, Consumer Price Index, NSA, 2001-2020
Source: US Bureau of Labor Statistics https://www.bls.gov/cpi/data.htm
Chart I-21 provides 12-month percentage changes of the consumer price index from 2001 to 2020. There was no deflation or threat of deflation from 2008 into 2009. Commodity prices collapsed during the panic of toxic assets in banks. When stress tests in 2009 revealed US bank balance sheets in much stronger position, cheap money at zero opportunity cost exited government obligations and flowed into carry trades of risk financial assets. Increases in commodity prices drove again the all items CPI with interruptions during risk aversion originating in multiple fears but especially from the sovereign debt crisis of Europe.
Chart I-21, US, Consumer Price Index, 12-Month Percentage Change, NSA, 2001-2020
Source: US Bureau of Labor Statistics https://www.bls.gov/cpi/data.htm
The trend of increase of the consumer price index excluding food and energy in Chart I-22 does not reveal any threat of deflation that would justify symmetric inflation targets. There are mild oscillations in a neat upward trend.
Chart I-22, US, Consumer Price Index Excluding Food and Energy, NSA, 2001-2020
Source: US Bureau of Labor Statistics https://www.bls.gov/cpi/data.htm
Chart I-23 provides 12-month percentage change of the consumer price index excluding food and energy. Past-year rates of inflation fell toward 1 percent from 2001 into 2003 because of the recession and the decline of commodity prices beginning before the recession with declines of real oil prices. Near zero interest rates with fed funds at 1 percent between Jun 2003 and Jun 2004 stimulated carry trades of all types, including in buying homes with subprime mortgages in expectation that low interest rates forever would increase home prices permanently, creating the equity that would permit the conversion of subprime mortgages into creditworthy mortgages (Gorton 2009EFM; see https://cmpassocregulationblog.blogspot.com/2011/07/causes-of-2007-creditdollar-crisis.html). Inflation rose and then collapsed during the unwinding of carry trades and the housing debacle of the global recession. Carry trades into 2011 and 2012 gave a new impulse to CPI inflation, all items and core. Symmetric inflation targets destabilize the economy by encouraging hunts for yields that inflate and deflate financial assets, obscuring risk/return decisions on production, investment, consumption and hiring.
Chart I-23, US, Consumer Price Index Excluding Food and Energy, 12-Month Percentage Change, NSA, 2001-2020
Source: US Bureau of Labor Statistics
https://www.bls.gov/cpi/data.htm
Headline and core producer price indexes are in Table I-6. The headline PPI SA increased 2.3 percent in May 2020 and decreased 2.8 percent NSA in the 12 months ending in May 2020. The core PPI SA increased 0.1 percent in May 2020 and increased 1.1 percent in 12 months. Analysis of annual equivalent rates of change shows inflation waves similar to those worldwide. In the first wave, the absence of risk aversion from the sovereign risk crisis in Europe motivated the carry trade from zero interest rates into commodity futures that caused the annual equivalent rate of 11.1 percent in the headline PPI in Jan-Apr 2011 and 3.7 percent in the core PPI. In the second wave, commodity futures prices collapsed in Jun 2011 with the return of risk aversion originating in the sovereign risk crisis of Europe. The annual equivalent rate of headline PPI inflation collapsed to 0.6 percent in May-Jun 2011 but the core annual equivalent inflation rate was higher at 2.4 percent. In the third wave, headline PPI inflation resuscitated with annual equivalent at 4.1 percent in Jul-Sep 2011 and core PPI inflation at 3.2 percent. Core PPI inflation was persistent throughout 2011, jumping from annual equivalent at 2.0 percent in the first three months of 2010 to 3.0 percent in 12 months ending in Dec 2011. Unconventional monetary policy is based on the proposition that core rates reflect more fundamental inflation and are thus better predictors of the future. In practice, the relation of core and headline inflation is as difficult to predict as future inflation (see IIID Supply Shocks in https://cmpassocregulationblog.blogspot.com/2011/05/slowing-growth-global-inflation-great.html). In the fourth wave, risk aversion originating in the lack of resolution of the European debt crisis caused unwinding of carry trades with annual equivalent headline PPI inflation of 0.0 percent in Oct-Dec 2011 and 2.0 percent in the core annual equivalent. In the fifth wave from Jan to Mar 2012, annual equivalent inflation was 3.2 percent for the headline index but 3.2 percent for the core index excluding food and energy. In the sixth wave, annual equivalent inflation in Apr-May 2012 during renewed risk aversion was minus 4.1 percent for the headline PPI and 1.8 percent for the core. In the seventh wave, continuing risk aversion caused reversal of carry trades into commodity exposures with annual equivalent headline inflation of minus 1.2 percent in Jun-Jul 2012 while core PPI inflation was at annual equivalent 3.7 percent. In the eighth wave, relaxed risk aversion because of the announcement of the impaired bond buying program or Outright Monetary Transactions (OMT) of the European Central Bank (https://www.ecb.europa.eu/press/pr/date/2012/html/pr120906_1.en.html) induced carry trades that drove annual equivalent inflation of producer prices of the United States at 13.4 percent in Aug-Sep 2012 and 1.2 percent in the core index. In the ninth wave, renewed risk aversion caused annual equivalent inflation of minus 2.4 percent in Oct 2012-Dec 2012 in the headline index and 1.2 percent in the core index. In the tenth wave, annual equivalent inflation was 7.4 percent in the headline index in Jan-Feb 2013 and 1.8 percent in the core index. In the eleventh wave, annual equivalent inflation was minus 7.0 percent in Mar-Apr 2012 and 1.2 percent for the core index. In the twelfth wave, annual equivalent inflation returned at 2.7 percent in May-Aug 2013 and 1.2 percent in the core index. In the thirteenth wave, portfolio reallocations away from commodities and into equities reversed commodity carry trade with annual equivalent inflation of 0.8 percent in Sep-Nov 2013 in the headline PPI and 1.6 percent in the core. In the fourteenth wave, annual equivalent inflation returned at 5.7 percent annual equivalent for the headline index in Dec 2013-Feb 2014 and 3.7 percent for the core index. In the fifteenth wave, annual equivalent inflation was 3.7 percent for the general PPI index in Mar 2014 and 0.0 percent for the core PPI index. In the sixteenth wave, annual equivalent headline PPI inflation increased at 0.9 percent in Apr-Jul 2014 and 1.8 percent for the core PPI. In the seventeenth wave, annual equivalent inflation in Aug-Nov 2014 was minus 2.7 percent and 1.8 percent for the core index. In the eighteenth wave, annual equivalent inflation fell at 17.6 percent for the general index in Dec 2014 to Jan 2015 and increased at 3.7 percent in the core index. In the nineteenth wave, annual equivalent inflation increased at 1.2 percent in Feb 2015 and increased at 3.7 percent for the core index. In the twentieth wave, annual equivalent producer prices increased at 4.9 percent in Mar 2015 and the core at 1.2 percent. In the twenty-first wave, producer prices fell at 8.1 percent annual equivalent in Apr 2015 while the core index increased at 1.2 percent. In the twenty-second wave, producer prices increased at annual equivalent 10.7 percent in May-Jun 2015 and core producer prices at 2.8 percent. In the twenty-third wave, producer prices fell at 1.2 percent in Jul 2015 and the core index increased at 2.4 percent. In the twenty-fourth wave, annual equivalent inflation fell at 7.4 percent in Aug-Oct 2015 and the core index changed at 0.0 percent annual equivalent. In the twenty-fifth wave, annual equivalent inflation was 1.2 percent in Nov 2015 with the core at 1.2 percent. In the twenty-sixth wave, the headline PPI fell at annual equivalent 6.6 percent and the core increased at 2.0 percent in Dec 2015-Feb 2016. In the twenty-seventh wave, annual equivalent inflation was 3.7 percent for the central index in Mar-May 2016 and 1.6 percent for the core. In the twenty-eighth wave, annual equivalent inflation was 8.7 percent for the headline index in Jun 2016 and 3.7 percent for the core. In the twenty-ninth wave, producer prices fell at annual equivalent 1.2 percent in Jul 2016 and core producer prices changed at 0.0 percent. In the thirtieth wave, producer prices fell at 3.5 percent annual equivalent in Aug 2016 while core producer prices increased at 1.2 percent. In the thirty-first wave, producer prices increased at annual equivalent 6.2 percent in Sep-Oct 2016 while core prices increased at 1.8 percent. In the thirty-second wave, producer prices decreased at 3.5 percent annual equivalent in Nov 2016 and the core index increased at 1.2 percent. In the thirty-third wave, producer prices increased at 11.4 percent in Dec 2016 and the core index increased at 2.4 percent. In the thirty-fourth wave, producer prices increased at 8.7 percent in Jan 2017 while the core increased at 2.4 percent. In the thirty-fifth wave, producer prices increased at 3.7 percent in Feb 2017 while the core index increased at 1.2 percent. In the thirty-sixth wave, producer prices increased at annual equivalent 1.2 percent in Mar 2017 while core producer prices increased at 3.7 percent. In the thirty-seventh wave, annual equivalent inflation of the headline index was at 4.9 percent in Apr 2017 and 4.9 percent for the core. In the thirty-eighth wave, producer prices fell at 9.2 percent annual equivalent in May 2017 while core producer prices changed at 0.0 percent. In the thirty-ninth wave, producer prices increased at annual equivalent 2.4 percent in Jun 2017 while core producer prices increased at 2.4 percent. In the fortieth wave, headline producer prices fell at 1.2 percent annual equivalent in Jul 2017 while core prices increased at 1.2 percent. In the forty-first wave, central producer prices increased at 8.7 percent annual equivalent in Aug-Sep 2017 while core prices increased at 1.2 percent. In the forty-second wave, producer prices increased at annual equivalent 6.8 percent in Oct-Nov 2017 while core producer prices increased at 4.3 percent. In the forty-third wave, producer prices increased at annual equivalent 1.2 percent in Dec 2017 while core prices changed at 0.0 percent. In the forty-fourth wave, producer prices increased at 3.7 percent annual equivalent in Jan 2018 while core producer prices changed at 1.2 percent. In the forty-fifth wave, producer prices increased at annual equivalent 2.4 percent in Feb 2018 while core prices increased at 1.2 percent. In the forty-sixth wave, producer prices increased at 2.4 percent annual equivalent in Mar 2018 while core prices increased at 3.7 percent. In the forty-seventh wave, producer prices fell at 3.5 percent annual equivalent in Apr 2018 while core prices increased at 2.4 percent. In the forty-eighth wave, producer prices increased at annual equivalent 8.7 percent in May 2018 while core prices increased at 2.4 percent. In the forty-ninth wave, producer prices increased at annual equivalent 1.8 percent in Jun-Jul 2018 while core prices increased at 3.0 percent. In the fiftieth wave, producer prices increased at annual equivalent 1.8 percent in Aug-Sep 2018 while core prices increased at 2.4 percent. In the fifty-first wave, producer prices increased at annual equivalent 8.7 percent in Oct 2018 while core prices increased at 2.4 percent. In the fifty-second wave, producer prices decreased at annual equivalent 7.7 percent in Nov 2018-Jan 2019 while core prices increased at 2.8 percent. In the fifty-third wave, producer prices increased at annual equivalent 8.3 percent in Feb-Apr 2019 while core prices increased at 1.6 percent. In the fifty-fourth wave, producer prices decreased at annual equivalent 3.0 percent in May-Jun 2019 while core prices increased at 0.6 percent. In the fifty-fifth wave, producer prices increased at annual equivalent 3.7 percent in Jul 2019 while core prices increased at 1.2 percent. In the fifty-sixth wave, producer prices fell at annual equivalent 2.4 percent in Aug-Sep 2019 while core prices increased at 0.6 percent. In the fifty-seventh wave, producer prices increased at annual equivalent 4.9 percent in Oct-Dec 2019 while core prices increased at 0.8 percent. In the fifty-eighth wave, producer prices changed at 0.0 percent annual equivalent in Jan 2020 while core prices changed at 0.0 percent. In the fifty-ninth wave, producer prices decreased at annual equivalent 20.0 percent in Feb-Apr 2020 while core prices increased at 2.0 percent. In the sixtieth wave, producer prices increased at annual equivalent 31.4 percent in May 2020 while core prices increased at 1.2 percent. It is almost impossible to forecast PPI inflation and its relation to CPI inflation. “Inflation surprise” by monetary policy could be proposed to climb along a downward sloping Phillips curve, resulting in higher inflation but lower unemployment (see Kydland and Prescott 1977, Barro and Gordon 1983 and past comments of this blog http://cmpassocregulationblog.blogspot.com/2011/05/slowing-growth-global-inflation-great.html http://cmpassocregulationblog.blogspot.com/2011/04/new-economics-of-rose-garden-turned.html http://cmpassocregulationblog.blogspot.com/2011/03/is-there-second-act-of-us-great.html http://cmpassocregulationblog.blogspot.com/2012/06/rules-versus-discretionary-authorities.html). The architects of monetary policy would require superior inflation forecasting ability compared to forecasting naivety by everybody else. In practice, we are all naïve in forecasting inflation and other economic variables and events.
Table I-6, US, Headline and Core PPI Inflation Monthly SA and 12-Month NSA ∆%
Finished | Finished | Finished Core SA | Finished Core NSA | |
May 2020 | 2.3 | -2.8 | 0.1 | 1.1 |
AE May | 31.4 | 1.2 | ||
Apr | -3.5 | -5.1 | 0.0 | 1.1 |
Mar | -1.1 | -0.9 | 0.3 | 1.2 |
Feb | -0.9 | 1.2 | 0.2 | 1.1 |
AE Feb-Apr | -20.0 | 2.0 | ||
Jan | 0.0 | 2.5 | 0.0 | 1.0 |
AE Jan | 0.0 | 0.0 | ||
Dec 2019 | 0.2 | 1.7 | 0.0 | 1.5 |
Nov | 0.4 | 1.0 | 0.2 | 1.6 |
Oct | 0.6 | -0.2 | 0.0 | 1.7 |
AE Oct-Dec | 4.9 | 0.8 | ||
Sep | -0.1 | -0.1 | 0.1 | 1.9 |
Aug | -0.3 | 0.3 | 0.0 | 2.0 |
AE Aug-Sep | -2.4 | 0.6 | ||
Jul | 0.3 | 0.7 | 0.1 | 2.2 |
AE Jul | 3.7 | 1.2 | ||
Jun | -0.5 | 0.5 | 0.0 | 2.3 |
May | 0.0 | 1.3 | 0.1 | 2.5 |
AE May-Jun | -3.0 | 0.6 | ||
Apr | 0.5 | 2.1 | 0.1 | 2.5 |
Mar | 1.1 | 1.4 | 0.2 | 2.7 |
Feb | 0.4 | 0.5 | 0.1 | 2.7 |
AE Feb-Apr | 8.3 | 1.6 | ||
Jan | -0.6 | 0.4 | 0.4 | 2.9 |
Dec 2018 | -0.6 | 1.3 | 0.1 | 2.6 |
Nov | -0.8 | 2.0 | 0.2 | 2.6 |
AE Nov-Jan | -7.7 | 2.8 | ||
Oct | 0.7 | 3.7 | 0.2 | 2.5 |
AE Oct | 8.7 | 2.4 | ||
Sep | 0.2 | 3.2 | 0.2 | 2.8 |
Aug | 0.1 | 3.7 | 0.2 | 2.6 |
AE Aug-Sep | 1.8 | 2.4 | ||
Jul | 0.1 | 4.3 | 0.3 | 2.4 |
Jun | 0.2 | 4.1 | 0.2 | 2.1 |
AE Jun-Jul | 1.8 | 3.0 | ||
May | 0.7 | 4.1 | 0.2 | 2.1 |
AE May | 8.7 | 2.4 | ||
Apr | -0.3 | 2.4 | 0.2 | 1.9 |
AE Apr | -3.5 | 2.4 | ||
Mar | 0.2 | 3.0 | 0.3 | 2.0 |
AE Mar | 2.4 | 3.7 | ||
Feb | 0.2 | 2.7 | 0.1 | 2.0 |
AE Feb | 2.4 | 1.2 | ||
Jan | 0.3 | 2.9 | 0.1 | 1.8 |
AE Jan | 3.7 | 1.2 | ||
Dec 2017 | 0.1 | 3.2 | 0.0 | 2.0 |
AE Dec | 1.2 | 0.0 | ||
Nov | 0.9 | 4.2 | 0.3 | 2.1 |
Oct | 0.2 | 2.9 | 0.4 | 2.0 |
AE Oct-Nov | 6.8 | 4.3 | ||
Sep | 0.8 | 3.3 | 0.0 | 1.7 |
Aug | 0.6 | 3.0 | 0.2 | 1.8 |
AE Aug-Sep | 8.7 | 1.2 | ||
Jul | -0.1 | 2.1 | 0.1 | 1.8 |
AE Jul | -1.2 | 1.2 | ||
Jun | 0.2 | 2.1 | 0.2 | 1.7 |
AE Jun | 2.4 | 2.4 | ||
May | -0.8 | 2.8 | 0.0 | 1.9 |
AE May | -9.2 | 0.0 | ||
Apr | 0.4 | 4.0 | 0.4 | 2.0 |
AE Apr | 4.9 | 4.9 | ||
Mar | 0.1 | 3.8 | 0.3 | 1.8 |
AE Mar | 1.2 | 3.7 | ||
Feb | 0.3 | 3.8 | 0.1 | 1.6 |
AE Feb | 3.7 | 1.2 | ||
Jan | 0.7 | 2.9 | 0.2 | 1.7 |
AE Jan | 8.7 | 2.4 | ||
Dec 2016 | 0.9 | 1.9 | 0.2 | 1.7 |
AE Dec | 11.4 | 2.4 | ||
Nov | -0.3 | 0.4 | 0.1 | 1.6 |
AE Nov | -3.5 | 1.2 | ||
Oct | 0.5 | 0.7 | 0.1 | 1.6 |
Sep | 0.5 | -0.1 | 0.2 | 1.4 |
AE Sep-Oct | 6.2 | 1.8 | ||
Aug | -0.3 | -1.9 | 0.1 | 1.4 |
AE Aug | -3.5 | 1.2 | ||
Jul | -0.1 | -2.0 | 0.0 | 1.2 |
AE Jul | -1.2 | 0.0 | ||
Jun | 0.7 | -2.0 | 0.3 | 1.5 |
AE Jun | 8.7 | 3.7 | ||
May | 0.5 | -2.2 | 0.1 | 1.6 |
Apr | 0.2 | -1.5 | 0.2 | 1.6 |
Mar | 0.2 | -2.3 | 0.1 | 1.5 |
AE Mar-May | 3.7 | 1.6 | ||
Feb | -0.7 | -2.0 | 0.1 | 1.5 |
Jan | -0.3 | -1.2 | 0.3 | 1.7 |
Dec 2015 | -0.7 | -2.7 | 0.1 | 1.8 |
AE Dec-Feb | -6.6 | 2.0 | ||
Nov | 0.1 | -3.3 | 0.1 | 1.7 |
AE Nov | 1.2 | 1.2 | ||
Oct | -0.3 | -4.0 | -0.1 | 1.8 |
Sep | -1.2 | -4.1 | 0.1 | 2.1 |
Aug | -0.4 | -3.1 | 0.0 | 2.1 |
AE ∆% Aug-Oct | -7.4 | 0.0 | ||
Jul | -0.1 | -2.8 | 0.2 | 2.3 |
AE ∆% Jul | -1.2 | 2.4 | ||
Jun | 0.6 | -2.6 | 0.5 | 2.3 |
May | 1.1 | -2.9 | 0.2 | 2.0 |
AE ∆% May-Jun | 10.7 | 2.8 | ||
Apr | -0.7 | -4.5 | 0.1 | 2.0 |
AE ∆% Apr | -8.1 | 1.2 | ||
Mar | 0.4 | -3.3 | 0.1 | 2.1 |
AE ∆% Mar | 4.9 | 1.2 | ||
Feb | 0.1 | -3.2 | 0.3 | 1.9 |
AE ∆% Feb | 1.2 | 3.7 | ||
Jan | -1.8 | -3.0 | 0.5 | 1.7 |
Dec 2014 | -1.4 | -0.6 | 0.1 | 1.7 |
AE ∆% Dec-Jan | -17.6 | 3.7 | ||
Nov | -0.3 | 1.1 | 0.0 | 2.0 |
Oct | -0.3 | 1.8 | 0.3 | 2.2 |
Sep | -0.3 | 2.2 | 0.1 | 2.1 |
Aug | 0.0 | 2.3 | 0.2 | 1.9 |
AE ∆% Aug-Nov | -2.7 | 1.8 | ||
July | 0.0 | 2.9 | 0.1 | 1.9 |
Jun | 0.2 | 2.8 | 0.2 | 1.9 |
May | -0.3 | 2.5 | 0.2 | 1.8 |
Apr | 0.4 | 3.1 | 0.1 | 1.7 |
AE ∆% Apr-Jul | 0.9 | 1.8 | ||
Mar | 0.3 | 1.8 | 0.0 | 1.7 |
AE ∆% Mar | 3.7 | 0.0 | ||
Feb | 0.2 | 1.3 | 0.1 | 1.9 |
Jan | 0.8 | 1.6 | 0.4 | 2.0 |
Dec 2013 | 0.4 | 1.4 | 0.4 | 1.6 |
AE ∆% Dec-Feb | 5.7 | 3.7 | ||
Nov | 0.3 | 0.8 | 0.2 | 1.3 |
Oct | 0.2 | 0.3 | 0.1 | 1.2 |
Sep | -0.3 | 0.2 | 0.1 | 1.2 |
AE ∆% Sep-Nov | 0.8 | 1.6 | ||
Aug | 0.5 | 1.2 | 0.1 | 1.2 |
Jul | -0.1 | 2.1 | 0.1 | 1.3 |
Jun | 0.1 | 2.3 | 0.1 | 1.6 |
May | 0.4 | 1.6 | 0.1 | 1.7 |
AE ∆% May-Aug | 2.7 | 1.2 | ||
Apr | -0.6 | 0.5 | 0.1 | 1.7 |
Mar | -0.6 | 1.1 | 0.1 | 1.7 |
AE ∆% Mar-Apr | -7.0 | 1.2 | ||
Feb | 0.6 | 1.8 | 0.2 | 1.8 |
Jan | 0.6 | 1.5 | 0.1 | 1.8 |
AE ∆% Jan-Feb | 7.4 | 1.8 | ||
Dec 2012 | -0.2 | 1.4 | 0.0 | 2.1 |
Nov | -0.5 | 1.4 | 0.2 | 2.2 |
Oct | 0.1 | 2.3 | 0.1 | 2.2 |
AE ∆% Oct-Dec | -2.4 | 1.2 | ||
Sep | 0.9 | 2.1 | 0.0 | 2.4 |
Aug | 1.2 | 1.9 | 0.2 | 2.6 |
AE ∆% Aug-Sep | 13.4 | 1.2 | ||
Jul | 0.2 | 0.5 | 0.4 | 2.6 |
Jun | -0.4 | 0.7 | 0.2 | 2.6 |
AE ∆% Jun-Jul | -1.2 | 3.7 | ||
May | -0.6 | 0.6 | 0.1 | 2.7 |
Apr | -0.1 | 1.8 | 0.2 | 2.7 |
AE ∆% Apr-May | -4.1 | 1.8 | ||
Mar | 0.1 | 2.7 | 0.2 | 2.9 |
Feb | 0.3 | 3.4 | 0.2 | 3.1 |
Jan | 0.4 | 4.1 | 0.4 | 3.1 |
AE ∆% Jan-Mar | 3.2 | 3.2 | ||
Dec 2011 | -0.1 | 4.7 | 0.2 | 3.0 |
Nov | 0.3 | 5.7 | 0.1 | 3.0 |
Oct | -0.2 | 5.9 | 0.2 | 2.9 |
AE ∆% Oct-Dec | 0.0 | 2.0 | ||
Sep | 0.9 | 7.1 | 0.3 | 2.8 |
Aug | -0.3 | 6.6 | 0.2 | 2.7 |
Jul | 0.4 | 7.2 | 0.3 | 2.7 |
AE ∆% Jul-Sep | 4.1 | 3.2 | ||
Jun | -0.4 | 7.0 | 0.3 | 2.3 |
May | 0.5 | 7.1 | 0.1 | 2.1 |
AE ∆% May-Jun | 0.6 | 2.4 | ||
Apr | 0.9 | 6.7 | 0.3 | 2.3 |
Mar | 0.7 | 5.7 | 0.3 | 2.0 |
Feb | 1.1 | 5.5 | 0.2 | 1.8 |
Jan | 0.8 | 3.7 | 0.4 | 1.6 |
AE ∆% Jan-Apr | 11.0 | 3.7 | ||
Dec 2010 | 0.9 | 3.8 | 0.2 | 1.4 |
Nov | 0.4 | 3.4 | 0.0 | 1.2 |
Oct | 0.8 | 4.3 | 0.0 | 1.6 |
Sep | 0.3 | 3.9 | 0.2 | 1.6 |
Aug | 0.6 | 3.3 | 0.1 | 1.3 |
Jul | 0.1 | 4.1 | 0.1 | 1.5 |
Jun | -0.3 | 2.7 | 0.1 | 1.1 |
May | 0.0 | 5.1 | 0.3 | 1.3 |
Apr | 0.0 | 5.4 | 0.0 | 0.9 |
Mar | 0.7 | 5.9 | 0.2 | 0.9 |
Feb | -0.7 | 4.1 | 0.1 | 1.0 |
Jan | 1.0 | 4.5 | 0.2 | 1.0 |
Note: Core: excluding food and energy; AE: annual equivalent
Source: US Bureau of Labor Statistics https://www.bls.gov/ppi/data.htm
The US producer price index NSA from 2000 to 2020 is in Chart I-24. There are two episodes of decline of the PPI during recessions in 2001 and in 2008. Barsky and Kilian (2004) consider the 2001 episode as one in which real oil prices were declining when recession began. Recession and the fall of commodity prices instead of generalized deflation explain the behavior of US inflation in 2008. There is similar collapse of producer prices into 2015 as in 2009 caused by the drop of
commodity prices.
Chart I-24, US, Producer Price Index, NSA, 2000-2020
Source: US Bureau of Labor Statistics
Twelve-month percentage changes of the PPI NSA from 2000 to 2020 are in Chart I-25. It may be possible to forecast trends a few months in the future under adaptive expectations but turning points are almost impossible to anticipate especially when related to fluctuations of commodity prices in response to risk aversion. In a sense, monetary policy has been tied to behavior of the PPI in the negative 12-month rates in 2001 to 2003 and then again in 2009 to 2010. There is similar sharp decline of inflation into 2015 caused by the drop of commodities. Monetary policy following deflation fears caused by commodity price fluctuations would introduce significant volatility and risks in financial markets and eventually in consumption and investment.
Chart I-25, US, Producer Price Index, 12-Month Percentage Change NSA, 2000-2020
Source: US Bureau of Labor Statistics
The US PPI excluding food and energy from 2000 to 2020 is in Chart I-26. There is here again a smooth trend of inflation instead of prolonged deflation as in Japan.
Chart I-26, US, Producer Price Index Excluding Food and Energy, NSA, 2000-2020
Source: US Bureau of Labor Statistics
Twelve-month percentage changes of the producer price index excluding food and energy are in Chart I-27. Fluctuations replicate those in the headline PPI. There is an evident trend of increase of 12-month rates of core PPI inflation in 2011 but lower rates in 2012-2014. Prices rose less rapidly into 2015-2018 as during earlier fluctuations. Twelve-month rates decrease in the final segment 2019-2020.
Chart I-27, US, Producer Price Index Excluding Food and Energy, NSA, 12-Month Percentage Changes, 2000-2020
Source: US Bureau of Labor Statistics
The US producer price index of energy goods from 2000 to 2020 is in Chart I-28. There is a clear upward trend with fluctuations, which would not occur under persistent deflation.
Chart I-28, US, Producer Price Index Finished Energy Goods, NSA, 2000-2020
Source: US Bureau of Labor Statistics
Chart I-29 provides 12-month percentage changes of the producer price index of energy goods from 2000 to 2020. Barsky and Killian (2004) relate the episode of declining prices of energy goods in 2001 to 2002 to the analysis of decline of real oil prices. Interest rates dropping to zero during the global recession in 2008 induced carry trades that explain the rise of the PPI of energy goods toward 30 percent. Bouts of risk aversion with policy interest rates held close to zero explain the fluctuations in the 12-month rates of the PPI of energy goods in the expansion phase of the economy. Symmetric inflation targets induce significant instability in inflation and interest rates with adverse effects on financial markets and the overall economy.
Chart I-29, US, Producer Price Index Finished Energy Goods, 12-Month Percentage Change, NSA, 2000-2020
Source: US Bureau of Labor Statistics
Effective with the January 2014 Producer Price Index (PPI) data release in February 2014 (https://www.bls.gov/news.release/archives/ppi_02192014.pdf 8), “BLS transitions from the Stage of Processing (SOP) to the Final Demand-Intermediate Demand (FD-ID) aggregation system. This shift results in significant changes to the PPI news release, as well as other documents available from PPI. The transition to the FD-ID system is the culmination of a long-standing PPI objective to improve the current SOP aggregation system by incorporating PPIs for services, construction, government purchases, and exports. In comparison to the SOP system, the FD-ID system more than doubles PPI coverage of the United States economy to over 75 percent of in-scope domestic production. The FD-ID system was introduced as a set of experimental indexes in January 2011. Nearly all new FD-ID goods, services, and construction indexes provide historical data back to either November 2009 or April 2010, while the indexes for goods that correspond with the historical SOP indexes go back to the 1970s or earlier.”
Headline and core final demand producer price indexes are in Table I-6B. The headline FD PPI SA increased 0.4 percent in May 2020 and decreased 0.8 percent NSA in the 12 months ending in May 2020. The core FD PPI SA decreased 0.1 percent in May 2020 and increased 0.3 percent in 12 months. Analysis of annual equivalent rates of change shows inflation waves similar to those worldwide. In the first wave, the absence of risk aversion from the sovereign risk crisis in Europe motivated the carry trade from zero interest rates into commodity futures that caused the average equivalent rate of 7.4 percent in the headline FD PPI in Jan-Apr 2011 and 4.6 percent in the core FD PPI. In the second wave, commodity futures prices collapsed in Jun 2011 with the return of risk aversion originating in the sovereign risk crisis of Europe. The annual equivalent rate of headline FD PPI inflation collapsed to 2.4 percent in May-Jun 2011 but the core annual equivalent inflation rate was at 2.4 percent. In the third wave, headline FD PPI inflation resuscitated with annual equivalent at 3.2 percent in Jul-Sep 2011 and core PPI inflation at 3.2 percent. Core FD PPI inflation was persistent throughout 2011, from annual equivalent at 4.6 percent in the first four months of 2011 to 2.6 percent in 12 months ending in Dec 2011. Unconventional monetary policy is based on the proposition that core rates reflect more fundamental inflation and are thus better predictors of the future. In practice, the relation of core and headline inflation is as difficult to predict as future inflation (see IIID Supply Shocks in https://cmpassocregulationblog.blogspot.com/2011/05/slowing-growth-global-inflation-great.html). In the fourth wave, risk aversion originating in the lack of resolution of the European debt crisis caused unwinding of carry trades with annual equivalent headline FD PPI inflation of minus 0.8 percent in Oct-Dec 2011 and minus 0.4 percent in the core annual equivalent. In the fifth wave from Jan to Mar 2012, annual equivalent inflation was 3.7 percent for the headline index and 3.7 percent for the core index excluding food and energy. In the sixth wave, annual equivalent inflation in Apr-May 2012 during renewed risk aversion was 1.2 percent for the headline FD PPI and 3.0 percent for the core. In the seventh wave, continuing risk aversion caused reversal of carry trades into commodity exposures with annual equivalent headline inflation of minus 2.4 percent in Jun-Jul 2012 while core FD PPI inflation was at annual equivalent minus 1.2 percent. In the eighth wave, relaxed risk aversion because of the announcement of the impaired bond buying program or Outright Monetary Transactions (OMT) of the European Central Bank (https://www.ecb.europa.eu/press/pr/date/2012/html/pr120906_1.en.html) induced carry trades that drove annual equivalent inflation of final demand producer prices of the United States at 6.2 percent in Aug-Sep 2012 and 1.2 percent in the core index. In the ninth wave, renewed risk aversion caused annual equivalent inflation of 0.8 percent in Oct 2011-Dec 2012 in the headline index and 2.8 percent in the core index. In the tenth wave, annual equivalent inflation was 3.0 percent in the headline index in Jan-Feb 2013 and 0.6 percent in the core index. In the eleventh wave, annual equivalent price change was minus 1.2 percent in Mar-Apr 2013 and 2.4 percent for the core index. In the twelfth wave, annual equivalent inflation returned at 1.8 percent in May-Aug 2013 and 1.6 percent in the core index. In the thirteenth wave, portfolio reallocations away from commodities and into equities reversed commodity carry trade with annual equivalent inflation of 1.6 percent in Sep-Nov 2013 in the headline FD PPI and 2.0 percent in the core. In the fourteenth wave, annual equivalent inflation was 2.4 percent annual equivalent for the headline index in Dec 2013-Feb 2014 and 1.6 percent for the core index. In the fifteenth wave, annual equivalent inflation increased to 2.4 percent in the headline FD PPI and 2.7 percent in the core in Mar-Jul 2014. In the sixteenth wave, annual equivalent inflation was minus 1.2 percent for the headline FD index and minus 0.6 percent for the core FD index in Aug-Sep 2014. In the seventeenth wave, annual equivalent inflation was 2.4 percent for the headline FD and 4.9 percent for the core FD in Oct 2014. In the eighteenth wave, annual equivalent inflation was minus 3.0 percent for the headline FDI and 1.2 percent for the core in Nov-Dec 2014. In the nineteenth wave, annual equivalent inflation was minus 6.4 percent for the general index and minus 2.4 percent for the core in Jan-Feb 2015. In the twentieth wave, annual equivalent inflation was 2.4 percent for the general index in Mar 2015 and 1.2 percent for the core. In the twenty-first wave, final demand prices decreased at annual equivalent 2.4 percent for the headline index in Apr 2015 and changed at 0.0 percent for the core index. In the twenty-second wave, annual equivalent inflation returned at 3.7 percent for the headline index in May-Jul 2015 and at 2.4 percent for the core index. In the twenty-third wave, the headline final demand index fell at 2.4 percent annual equivalent in Aug 2015 and the core changed at 0.0 percent annual equivalent. In the twenty-fourth wave, FD prices fell at annual equivalent 4.1 percent in Sep-Oct 2015. In the twenty-fifth wave, FD prices increased at 1.2 percent annual equivalent in Nov 2015. In the twenty-sixth wave, FD prices decreased at 1.2 percent annual equivalent in Dec 2015. In the twenty-seventh wave, FD prices increased at 4.9 percent annual equivalent in Jan 2016 and the core FD increased at 6.2 percent. In the twenty-eighth wave, FD prices fell at annual equivalent 1.8 percent in Feb-Mar 2016 while the core decreased at 0.6 percent. In the twenty-ninth wave, FD prices increased at 3.7 percent annual equivalent in Apr-Jun 2016 and core FD increased at 2.4 percent. In the thirtieth wave, final demand prices decreased at 1.2 percent in annual equivalent in Jul 2016 while the core decreased at 1.2 percent. In the thirty-first wave, final demand prices decreased at annual equivalent 2.4 percent in Aug 2016 and the core changed at 0.0 percent. In the thirty-second wave, final demand prices increased at annual equivalent 4.9 percent in Sep 2016 while core final demand increased at 2.4 percent. In the thirty-third wave, final demand prices increased at 2.4 percent and core final demand prices increased at 1.2 percent in Oct 2016. In the thirty-fourth wave, final demand producer prices increased at 3.0 percent annual equivalent in Nov-Dec 2016 while the core increased at 3.0 percent. In the thirty-fifth wave, final demand producer prices increased at 4.9 percent in Jan 2017 while core prices increased at 3.7 percent. In the thirty-sixth wave, final demand prices changed at 0.0 percent annual equivalent in Feb 2017 while the core index decreased at 1.2 percent. In the thirty-seventh wave, final demand prices increased at 2.4 percent annual equivalent in Mar 2017 while the core index increased at 2.4 percent. In the thirty-eighth wave, final demand prices increased at 4.9 percent in Apr 2017 while the core increased at 4.9 percent. In the thirty-ninth wave, final demand prices increased at annual equivalent 0.4 percent in May-Jun 2017 while core prices increased at 1.8 percent. In the fortieth wave, final demand prices increased at 1.2 percent annual equivalent in Jul 2017 while core prices increased at 2.4 percent. In the forty-first wave, final demand prices increased at 4.9 percent annual equivalent in Aug-Nov 2017 while core prices increased at 4.1 percent. In the forty-second wave, final demand prices changed at annual equivalent 0.0 percent in Dec 2017 while core prices changed at 0.0 percent. In the forty-third wave, final demand prices increased at annual equivalent 4.1 percent in Jan-Mar 2018 while core prices increased at 4.1 percent. In the forty-fourth wave, final demand prices increased at 3.2 percent in Apr-Jun 2018 while core prices increased at 3.2 percent. In the forty-fifth wave, final demand prices increased at 1.2 percent in Jul-Aug 2018 while core prices increased at 1.2 percent. In the forty-sixth wave, final demand prices increased at 5.5 percent annual equivalent in Sep-Oct 2018 while core prices increased at 4.3 percent. In the forty-seventh wave, final demand prices decreased at 1.2 percent annual equivalent in Nov 2018 while core prices increased at 2.4 percent. In the forty-eighth wave, final demand prices decreased at 2.4 percent annual equivalent in Dec 2018-Jan 2019 while core prices increased at 1.2 percent. In the forty-ninth wave, final demand prices increased at annual equivalent 4.1 percent in Feb-Apr 2019 while core prices increased at 2.8 percent. In the fiftieth wave, final demand prices increased at 2.4 percent in May 2019 while core prices changed at 2.4 percent. In the fifty-first wave, final demand prices increased at annual equivalent 0.8 percent in Jun-Aug 2019 while core prices increased at 2.0 percent. In the fifty-second wave, final demand prices decreased at annual equivalent 3.5 percent in Sep 2019 while core prices decreased at 2.4 percent. In the fifty-third wave, final demand prices increased at 1.2 percent in Oct-Nov 2019 while core prices decreased at 0.6 percent. In the fifty-fourth wave, final demand prices increased at annual equivalent 3.7 percent in Dec 2019-Jan 2020 while core prices increased at 3.7 percent. In the fifty-fifth wave, final demand prices decreased at annual equivalent 7.4 percent in Feb-Apr 2020 while core prices decreased at 1.2 percent. In the fifty-sixth wave, final demand prices increased at annual equivalent 4.9 percent in May 2020 while core prices decreased at 1.2 percent. It is almost impossible to forecast PPI inflation and its relation to CPI inflation. “Inflation surprise” by monetary policy could be proposed to climb along a downward sloping Phillips curve, resulting in higher inflation but lower unemployment (see Kydland and Prescott 1977, Barro and Gordon 1983 and past comments of this blog http://cmpassocregulationblog.blogspot.com/2011/05/slowing-growth-global-inflation-great.html http://cmpassocregulationblog.blogspot.com/2011/04/new-economics-of-rose-garden-turned.html http://cmpassocregulationblog.blogspot.com/2011/03/is-there-second-act-of-us-great.html http://cmpassocregulationblog.blogspot.com/2012/06/rules-versus-discretionary-authorities.html). The architects of monetary policy would require superior inflation forecasting ability compared to forecasting naivety by everybody else. In practice, we are all naïve in forecasting inflation and other economic variables and events.
Final Demand | Final Demand | Final Demand Core SA | Final Demand Core NSA | |
May 2020 | 0.4 | -0.8 | -0.1 | 0.3 |
AE ∆% May | 4.9 | -1.2 | ||
Apr | -1.3 | -1.2 | -0.3 | 0.6 |
Mar | -0.2 | 0.7 | 0.2 | 1.4 |
Feb | -0.4 | 1.3 | -0.2 | 1.4 |
AE ∆% Feb-Apr | -7.4 | -1.2 | ||
Jan | 0.3 | 2.0 | 0.3 | 1.6 |
Dec 2019 | 0.3 | 1.4 | 0.3 | 1.3 |
AE ∆% Dec-Jan | 3.7 | 3.7 | ||
Nov | -0.1 | 1.0 | -0.3 | 1.2 |
Oct | 0.3 | 1.0 | 0.2 | 1.6 |
AE ∆% Oct-Nov | 1.2 | -0.6 | ||
Sep | -0.3 | 1.5 | -0.2 | 2.0 |
AE ∆% Sep | -3.5 | -2.4 | ||
Aug | 0.1 | 1.9 | 0.3 | 2.3 |
Jul | 0.3 | 1.6 | 0.2 | 2.2 |
Jun | -0.2 | 1.6 | 0.0 | 2.2 |
AE ∆% Jun-Aug | 0.8 | 2.0 | ||
May | 0.2 | 2.1 | 0.2 | 2.4 |
AE ∆% May | 2.4 | 2.4 | ||
Apr | 0.4 | 2.4 | 0.4 | 2.5 |
Mar | 0.4 | 2.0 | 0.1 | 2.3 |
Feb | 0.2 | 1.9 | 0.2 | 2.5 |
AE ∆% Feb-Apr | 4.1 | 2.8 | ||
Jan | -0.3 | 1.9 | 0.0 | 2.6 |
Dec 2018 | -0.1 | 2.6 | 0.2 | 2.9 |
AE ∆% Dec-Jan | -2.4 | 1.2 | ||
Nov | -0.1 | 2.6 | 0.2 | 2.7 |
AE ∆% Nov | -1.2 | 2.4 | ||
Oct | 0.7 | 3.1 | 0.5 | 2.7 |
Sep | 0.2 | 2.7 | 0.2 | 2.6 |
AE ∆% Sep-Oct | 5.5 | 4.3 | ||
Aug | 0.0 | 3.0 | 0.0 | 2.6 |
Jul | 0.2 | 3.4 | 0.2 | 2.8 |
AE ∆% Jul-Aug | 1.2 | 1.2 | ||
Jun | 0.3 | 3.3 | 0.3 | 2.7 |
May | 0.4 | 3.1 | 0.3 | 2.4 |
Apr | 0.1 | 2.7 | 0.2 | 2.4 |
AE ∆% Apr-Jun | 3.2 | 3.2 | ||
Mar | 0.3 | 2.9 | 0.3 | 2.7 |
Feb | 0.3 | 2.8 | 0.3 | 2.5 |
Jan | 0.4 | 2.6 | 0.4 | 2.2 |
AE ∆% Jan-Mar | 4.1 | 4.1 | ||
Dec 2017 | 0.0 | 2.5 | 0.0 | 2.2 |
AE ∆% Dec | 0.0 | 0.0 | ||
Nov | 0.4 | 3.0 | 0.2 | 2.3 |
Oct | 0.4 | 2.8 | 0.4 | 2.4 |
Sep | 0.4 | 2.6 | 0.2 | 2.2 |
Aug | 0.4 | 2.4 | 0.2 | 2.2 |
AE ∆% Aug-Nov | 4.9 | 4.1 | ||
Jul | 0.1 | 2.0 | 0.2 | 1.9 |
AE ∆% Jul | 1.2 | 2.4 | ||
Jun | 0.0 | 1.9 | 0.0 | 1.8 |
May | 0.1 | 2.3 | 0.3 | 2.0 |
AE ∆% May-Jun | 0.4 | 1.8 | ||
Apr | 0.4 | 2.5 | 0.4 | 1.9 |
AE ∆% Apr | 4.9 | 4.9 | ||
Mar | 0.2 | 2.2 | 0.2 | 1.5 |
AE ∆% Mar | 2.4 | 2.4 | ||
Feb | 0.0 | 2.0 | -0.1 | 1.3 |
AE ∆% Feb | 0.0 | -1.2 | ||
Jan | 0.4 | 1.7 | 0.3 | 1.4 |
AE ∆% Jan | 4.9 | 3.7 | ||
Dec 2016 | 0.3 | 1.7 | 0.2 | 1.7 |
Nov | 0.2 | 1.3 | 0.3 | 1.7 |
AE ∆% Nov-Dec | 3.0 | 3.0 | ||
Oct | 0.2 | 1.1 | 0.1 | 1.5 |
AE ∆% Oct | 2.4 | 1.2 | ||
Sep | 0.4 | 0.6 | 0.2 | 1.2 |
AE ∆% Sep | 4.9 | 2.4 | ||
Aug | -0.2 | 0.0 | 0.0 | 1.0 |
AE ∆% Aug | -2.4 | 0.0 | ||
July | -0.1 | 0.0 | -0.1 | 0.9 |
AE ∆% Jul | -1.2 | -1.2 | ||
Jun | 0.5 | 0.2 | 0.3 | 1.2 |
May | 0.3 | 0.0 | 0.1 | 1.2 |
Apr | 0.1 | 0.2 | 0.2 | 1.1 |
AE ∆% Apr-Jun | 3.7 | 2.4 | ||
Mar | 0.0 | -0.1 | -0.1 | 1.1 |
Feb | -0.3 | 0.1 | 0.0 | 1.3 |
AE ∆% Mar-Feb | -1.8 | -0.6 | ||
Jan | 0.4 | 0.0 | 0.5 | 0.8 |
AE ∆% Jan | 4.9 | 6.2 | ||
Dec 2015 | -0.1 | -1.1 | 0.2 | 0.2 |
AE ∆% Dec | -1.2 | 2.4 | ||
Nov | 0.1 | -1.3 | 0.1 | 0.3 |
AE ∆% Nov | 1.2 | 1.2 | ||
Oct | -0.3 | -1.4 | -0.2 | 0.2 |
Sep | -0.4 | -1.1 | -0.1 | 0.7 |
AE ∆% Sep-Oct | -4.1 | -1.8 | ||
Aug | -0.2 | -1.0 | 0.0 | 0.6 |
AE ∆% Aug | -2.4 | 0.0 | ||
Jul | 0.2 | -0.7 | 0.2 | 0.8 |
Jun | 0.3 | -0.5 | 0.3 | 1.1 |
May | 0.4 | -0.8 | 0.1 | 0.7 |
AE ∆% May-Jul | 3.7 | 2.4 | ||
Apr | -0.2 | -1.1 | 0.0 | 1.0 |
AE ∆% Apr | -2.4 | 0.0 | ||
Mar | 0.2 | -0.9 | 0.1 | 0.8 |
AE ∆% Mar | 2.4 | 1.2 | ||
Feb | -0.5 | -0.5 | -0.4 | 1.0 |
Jan | -0.6 | 0.0 | 0.0 | 1.7 |
AE ∆% Jan-Feb | -6.4 | -2.4 | ||
Dec 2014 | -0.3 | 0.9 | 0.2 | 2.0 |
Nov | -0.2 | 1.3 | 0.0 | 1.7 |
AE ∆% Nov-Dec | -3.0 | 1.2 | ||
Oct | 0.2 | 1.5 | 0.4 | 1.9 |
AE ∆% Oct | 2.4 | 4.9 | ||
Sep | -0.2 | 1.6 | -0.1 | 1.6 |
Aug | 0.0 | 1.9 | 0.0 | 1.9 |
AE ∆% Aug-Sep | -1.2 | -0.6 | ||
Jul | 0.4 | 1.9 | 0.5 | 1.9 |
Jun | -0.1 | 1.8 | 0.0 | 1.6 |
May | 0.2 | 2.1 | 0.3 | 2.1 |
Apr | 0.1 | 1.8 | 0.0 | 1.5 |
Mar | 0.4 | 1.6 | 0.3 | 1.6 |
AE ∆% Mar-Jul | 2.4 | 2.7 | ||
Feb | 0.2 | 1.2 | 0.2 | 1.6 |
Jan | 0.3 | 1.3 | 0.2 | 1.4 |
Dec 2013 | 0.1 | 1.2 | 0.0 | 1.2 |
AE ∆% Dec-Feb | 2.4 | 1.6 | ||
Nov | 0.2 | 1.1 | 0.2 | 1.4 |
Oct | 0.2 | 1.3 | 0.2 | 1.7 |
Sep | 0.0 | 1.1 | 0.1 | 1.6 |
AE ∆% Sep-Nov | 1.6 | 2.0 | ||
Aug | 0.1 | 1.7 | 0.0 | 1.8 |
Jul | 0.2 | 2.0 | 0.3 | 1.7 |
Jun | 0.4 | 1.7 | 0.4 | 1.3 |
May | -0.1 | 0.9 | -0.3 | 0.9 |
AE ∆% May-Aug | 1.8 | 1.6 | ||
Apr | -0.2 | 0.9 | 0.2 | 1.3 |
Mar | 0.0 | 1.3 | 0.2 | 1.5 |
AE ∆% Mar-Apr | -1.2 | 2.4 | ||
Feb | 0.2 | 1.6 | 0.0 | 1.4 |
Jan | 0.3 | 1.6 | 0.1 | 1.7 |
AE ∆% Jan-Feb | 3.0 | 0.6 | ||
Dec 2012 | 0.0 | 1.9 | 0.1 | 2.0 |
Nov | 0.1 | 1.7 | 0.5 | 1.8 |
Oct | 0.1 | 1.9 | 0.1 | 1.6 |
AE ∆% Oct-Dec | 0.8 | 2.8 | ||
Sep | 0.7 | 1.5 | 0.3 | 1.4 |
Aug | 0.3 | 1.2 | -0.1 | 1.2 |
AE ∆% Aug-Sep | 6.2 | 1.2 | ||
Jul | -0.1 | 1.0 | -0.1 | 1.7 |
Jun | -0.3 | 1.3 | -0.1 | 1.9 |
AE ∆% Jun-Jul | -2.4 | -1.2 | ||
May | -0.1 | 1.6 | 0.2 | 2.2 |
Apr | 0.3 | 2.0 | 0.3 | 2.1 |
AE ∆% Apr-May | 1.2 | 3.0 | ||
Mar | 0.2 | 2.4 | 0.2 | 2.3 |
Feb | 0.3 | 2.8 | 0.3 | 2.6 |
Jan | 0.4 | 3.1 | 0.4 | 2.5 |
AE ∆% Jan-Mar | 3.7 | 3.7 | ||
Dec 2011 | -0.1 | 3.2 | 0.0 | 2.6 |
Nov | 0.3 | 3.7 | 0.2 | 2.7 |
Oct | -0.4 | 3.7 | -0.3 | 2.7 |
AE ∆% Oct-Dec | -0.8 | -0.4 | ||
Sep | 0.4 | 4.5 | 0.2 | 2.9 |
Aug | 0.2 | 4.4 | 0.4 | 3.0 |
Jul | 0.2 | 4.5 | 0.2 | 2.7 |
AE ∆% Jul-Sep | 3.2 | 3.2 | ||
Jun | 0.1 | 4.3 | 0.2 | 2.6 |
May | 0.3 | 4.2 | 0.2 | 2.3 |
AE ∆% May-Jun | 2.4 | 2.4 | ||
Apr | 0.5 | 4.2 | 0.3 | 2.5 |
Mar | 0.7 | 4.0 | 0.5 | NA |
Feb | 0.6 | 3.3 | 0.3 | NA |
Jan | 0.6 | 2.4 | 0.4 | NA |
AE ∆% Jan-Apr | 7.4 | 4.6 | ||
Dec 2010 | 0.3 | 2.8 | 0.1 | NA |
Nov | 0.3 | 2.6 | 0.1 | NA |
Oct | 0.4 | NA | 0.1 | NA |
Sep | 0.3 | NA | 0.2 | NA |
Aug | 0.2 | NA | 0.0 | NA |
Jul | 0.2 | NA | 0.2 | NA |
Jun | -0.2 | NA | -0.1 | NA |
May | 0.2 | NA | 0.3 | NA |
Apr | 0.3 | NA | NA | NA |
Mar | 0.1 | NA | NA | NA |
Feb | -0.2 | NA | NA | NA |
Jan | 0.9 | NA | NA | NA |
Dec 2009 | 0.1 |
Note: Core: excluding food and energy; AE: annual equivalent
Source: US Bureau of Labor Statistics https://www.bls.gov/ppi/data.htm
Chart I-24B provides the FD PPI NSA from 2009 to 2020. There is persistent inflation with periodic declines in inflation waves similar to those worldwide.
Chart I-24B, US, Final Demand Producer Price Index, NSA, 2009-2020
Source: US Bureau of Labor Statistics
Twelve-month percentage changes of the FD PPI from 2010 to 2020 are in Chart I-25B. There are fluctuations in the rates with evident trend of decline to more subdued inflation. Reallocations of investment portfolios of risk financial assets from commodities to stocks explain much lower FD PPI inflation.
Chart I-25B, US, Final Demand Producer Price Index, 12-Month Percentage Change NSA, 2010-2020
Source: US Bureau of Labor Statistics
The core FD PPI NSA is in Chart I-26B. The behavior is similar to the headline index but with less fluctuation.
Chart I-26B, US, Final Demand Producer Price Index Excluding Food and Energy, NSA, 2009-2020
Source: US Bureau of Labor Statistics
Percentage changes in 12 months of the core FD PPI are in Chart I-27B. There are fluctuations in 12-month percentage changes but with evident declining trend to more moderate inflation.
Chart I-27B, US, Final Demand Producer Price Index Excluding Food and Energy, 12-Month Percentage Change, NSA, 2010-2020
Source: US Bureau of Labor Statistics
The energy FD PPI NSA is in Chart I-28B. The index increased during the reposition of carry trades after the discovery of lack of toxic assets in banks that caused flight away from risk financial assets into government obligations of the US (Cochrane and Zingales 2009). Alternating risk aversion and appetite with reallocations among classes of risk financial assets explain the behavior of the index after late 2010.
Chart I-28B, US, Final Demand Energy Producer Price Index, NSA, 2009-2020
Source: US Bureau of Labor Statistics
Twelve-month percentage changes of the FD energy PPI are in Chart I-29B. Rates moderated from late 2010 to the present. There are multiple negative rates. Investors create and reverse carry trades from zero interest rates to derivatives of commodities in accordance with relative risk evaluations of classes of risk financial assets.
Chart I-29B, US, Final Demand Energy Producer Price Index, 12-Month Percentage Change, NSA, 2010-2020
Source: US Bureau of Labor Statistics
monetary policy even with the economy growing at or close to potential output.
Table I-7, CPI All Items, CPI Core and CPI Housing, 12-Month Percentage Change, NSA 2001-2020
May | CPI All Items | CPI Core ex Food and Energy | CPI Housing |
2020 | 0.1 | 1.2 | 2.1 |
2019 | 1.8 | 2.0 | 2.8 |
2018 | 2.8 | 2.2 | 3.0 |
2017 | 1.9 | 1.7 | 3.1 |
2016 | 1.0 | 2.2 | 2.4 |
2015 | 0.0 | 1.7 | 1.9 |
2014 | 2.1 | 2.0 | 2.6 |
2013 | 1.4 | 1.7 | 2.2 |
2012 | 1.7 | 2.3 | 1.6 |
2011 | 3.6 | 1.5 | 1.2 |
2010 | 2.0 | 0.9 | -0.5 |
2009 | -1.3 | 1.8 | 0.5 |
2008 | 4.2 | 2.3 | 3.3 |
2007 | 2.7 | 2.2 | 3.3 |
2006 | 4.2 | 2.4 | 4.0 |
2005 | 2.8 | 2.2 | 3.0 |
2004 | 3.1 | 1.7 | 2.4 |
2003 | 2.1 | 1.6 | 2.7 |
2002 | 1.2 | 2.5 | 2.2 |
2001 | 3.2 | 2.5 | 4.6 |
Source: US Bureau of Labor Statistics https://www.bls.gov/cpi/
© Carlos M. Pelaez, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020.
No comments:
Post a Comment