Sunday, September 1, 2013

Increasing Interest Rate Risk, Steepening Yield Curve and Peaking Valuations of Risk Financial Assets, Mediocre and Decelerating United States Economic Growth, Stagnating Real Disposable Income, Financial Repression, World Economic Slowdown and Global Recession Risk: Part I

 

Increasing Interest Rate Risk, Steepening Yield Curve and Peaking Valuations of Risk Financial Assets, Mediocre and Decelerating United States Economic Growth, Stagnating Real Disposable Income, Financial Repression, World Economic Slowdown and Global Recession Risk

Carlos M. Pelaez

© Carlos M. Pelaez, 2009, 2010, 2011, 2012, 2013

Executive Summary

I Mediocre and Decelerating United States Economic Growth

IA Mediocre and Decelerating United States Economic Growth

IA1 Contracting Real Private Fixed Investment

IA2 Swelling Undistributed Corporate Profits

II Stagnating Real Disposable Income and Consumption Expenditures

IIA1 Stagnating Real Disposable Income and Consumption Expenditures

IIA2 Financial Repression

III World Financial Turbulence

IIIA Financial Risks

IIIE Appendix Euro Zone Survival Risk

IIIF Appendix on Sovereign Bond Valuation

IV Global Inflation

V World Economic Slowdown

VA United States

VB Japan

VC China

VD Euro Area

VE Germany

VF France

VG Italy

VH United Kingdom

VI Valuation of Risk Financial Assets

VII Economic Indicators

VIII Interest Rates

IX Conclusion

References

Appendixes

Appendix I The Great Inflation

IIIB Appendix on Safe Haven Currencies

IIIC Appendix on Fiscal Compact

IIID Appendix on European Central Bank Large Scale Lender of Last Resort

IIIG Appendix on Deficit Financing of Growth and the Debt Crisis

IIIGA Monetary Policy with Deficit Financing of Economic Growth

IIIGB Adjustment during the Debt Crisis of the 1980s

Executive Summary

Contents of Executive Summary

ESI Increasing Interest Rate Risk, Tapering Quantitative Easing, Duration Dumping, Steepening Yield Curve and Global Financial and Economic Risk

ESII Mediocre United States Economic Growth

ESIII Contracting Real Private Fixed Investment

ESIV Swelling Undistributed Corporate Profits

ESV Stagnating Real Disposable Income

ESVI Financial Repression

ESVII US Long-term Prices and Fear of Deflation

ESI Increasing Interest Rate Risk, Tapering Quantitative Easing, Duration Dumping, Steepening Yield Curve and Global Financial and Economic Risk. The International Monetary Fund (IMF) provides an international safety net for prevention and resolution of international financial crises. The IMF’s Financial Sector Assessment Program (FSAP) provides analysis of the economic and financial sectors of countries (see Pelaez and Pelaez, International Financial Architecture (2005), 101-62, Globalization and the State, Vol. II (2008), 114-23). Relating economic and financial sectors is a challenging task for both theory and measurement. The IMF (2012WEOOct) provides surveillance of the world economy with its Global Economic Outlook (WEO) (http://www.imf.org/external/pubs/ft/weo/2012/02/index.htm), of the world financial system with its Global Financial Stability Report (GFSR) (IMF 2012GFSROct) (http://www.imf.org/external/pubs/ft/gfsr/2012/02/index.htm) and of fiscal affairs with the Fiscal Monitor (IMF 2012FMOct) (http://www.imf.org/external/pubs/ft/fm/2012/02/fmindex.htm). There appears to be a moment of transition in global economic and financial variables that may prove of difficult analysis and measurement. It is useful to consider a summary of global economic and financial risks, which are analyzed in detail in the comments of this blog in Section VI Valuation of Risk Financial Assets, Table VI-4.

Economic risks include the following:

  1. China’s Economic Growth. China is lowering its growth target to 7.5 percent per year. China’s GDP growth decelerated significantly from annual equivalent 10.4 percent in IIQ2011 to 7.4 percent in IVQ2011 and 6.2 percent in IQ2012, rebounding to 8.7 percent in IIQ2012, 8.2 percent in IIIQ2012 and 7.8 percent in IVQ2012. Annual equivalent growth in IQ2013 fell to 6.6 percent and to 7.0 percent in IIQ2013 (See Subsection VC and earlier at http://cmpassocregulationblog.blogspot.com/2013/07/tapering-quantitative-easing-policy-and_7005.html and earlier at http://cmpassocregulationblog.blogspot.com/2013/01/recovery-without-hiring-world-inflation.html and earlier at http://cmpassocregulationblog.blogspot.com/2012/10/world-inflation-waves-stagnating-united_21.html).
  2. United States Economic Growth, Labor Markets and Budget/Debt Quagmire. The US is growing slowly with 28.7 million in job stress, fewer 10 million full-time jobs, high youth unemployment, historically low hiring and declining real wages.
  3. Economic Growth and Labor Markets in Advanced Economies. Advanced economies are growing slowly. There is still high unemployment in advanced economies.
  4. World Inflation Waves. Inflation continues in repetitive waves globally (http://cmpassocregulationblog.blogspot.com/2013/08/duration-dumping-and-peaking-valuations_18.html

A list of financial uncertainties includes:

  1. Euro Area Survival Risk. The resilience of the euro to fiscal and financial doubts on larger member countries is still an unknown risk.
  2. Foreign Exchange Wars. Exchange rate struggles continue as zero interest rates in advanced economies induce devaluation of their currencies.
  3. Valuation of Risk Financial Assets. Valuations of risk financial assets have reached extremely high levels in markets with lower volumes.
  4. Duration Trap of the Zero Bound. The yield of the US 10-year Treasury rose from 2.031 percent on Mar 9, 2012, to 2.294 percent on Mar 16, 2012. Considering a 10-year Treasury with coupon of 2.625 percent and maturity in exactly 10 years, the price would fall from 105.3512 corresponding to yield of 2.031 percent to 102.9428 corresponding to yield of 2.294 percent, for loss in a week of 2.3 percent but far more in a position with leverage of 10:1. Min Zeng, writing on “Treasurys fall, ending brutal quarter,” published on Mar 30, 2012, in the Wall Street Journal (http://professional.wsj.com/article/SB10001424052702303816504577313400029412564.html?mod=WSJ_hps_sections_markets), informs that Treasury bonds maturing in more than 20 years lost 5.52 percent in the first quarter of 2012.
  5. Credibility and Commitment of Central Bank Policy. There is a credibility issue of the commitment of monetary policy (Sargent and Silber 2012Mar20).
  6. Carry Trades. Commodity prices driven by zero interest rates have resumed their increasing path with fluctuations caused by intermittent risk aversion

Professionals use a variety of techniques in measuring interest rate risk (Fabozzi, Buestow and Johnson, 2006, Chapter Nine, 183-226):

  • Full valuation approach in which securities and portfolios are shocked by 50, 100, 200 and 300 basis points to measure their impact on asset values
  • Stress tests requiring more complex analysis and translation of possible events with high impact even if with low probability of occurrence into effects on actual positions and capital
  • Value at Risk (VaR) analysis of maximum losses that are likely in a time horizon
  • Duration and convexity that are short-hand convenient measurement of changes in prices resulting from changes in yield captured by duration and convexity
  • Yield volatility

Analysis of these methods is in Pelaez and Pelaez (International Financial Architecture (2005), 101-162) and Pelaez and Pelaez, Globalization and the States, Vol. (I) (2008a), 78-100). Frederick R. Macaulay (1938) introduced the concept of duration in contrast with maturity for analyzing bonds. Duration is the sensitivity of bond prices to changes in yields. In economic jargon, duration is the yield elasticity of bond price to changes in yield, or the percentage change in price after a percentage change in yield, typically expressed as the change in price resulting from change of 100 basis points in yield, with the mathematical formula being the negative of the yield elasticity of the bond price or –[dB/d(1+y)]((1+y)/B), where d is the derivative operator of calculus, B the bond price, y the yield and the elasticity does not have dimension (Hallerbach 2001). The duration trap of unconventional monetary policy is that duration is higher the lower the coupon and higher the lower the yield, other things being constant. Coupons and yields are historically low because of unconventional monetary policy. Duration dumping during a rate increase may trigger the same crossfire selling of high duration positions that magnified the credit crisis. Traders reduced positions because capital losses in one segment, such as mortgage-backed securities, triggered haircuts and margin increases that reduced capital available for positioning in all segments, causing fire sales in multiple segments (Brunnermeier and Pedersen 2009; see Pelaez and Pelaez, Regulation of Banks and Finance (2008b), 217-24). Financial markets are currently experiencing fear of duration resulting from the debate within and outside the Fed on tapering quantitative easing. Table VIII-2 provides the yield curve of Treasury securities on Aug 30, 2013, Aug 22, 2013, May 1, 2013, Aug 30, 2012 and Aug 30, 2006. There is ongoing steepening of the yield curve for longer maturities, which are also the ones with highest duration. The 10-year yield increased from 1.45 percent on Jul 26, 2012 to 2.90 percent on Aug 22, 2013, as measured by the United States Treasury. Assume that a bond with maturity in 10 years were issued on Aug 22, 2013 at par or price of 100 with coupon of 1.45 percent. The price of that bond would be 87.4912 with instantaneous increase of the yield to 2.90 percent for loss of 12.5 percent and far more with leverage. Losses absorb capital available for positioning, triggering crossfire sales in multiple asset classes (Brunnermeier and Pedersen 2009). Chris Dieterich, writing on “Bond investors turn to cash,” on Jul 25, 2013, published in the Wall Street Journal (http://online.wsj.com/article/SB10001424127887323971204578625900935618178.html), uses data of the Investment Company Institute (http://www.ici.org/) in showing withdrawals of $43 billion in taxable mutual funds in Jun, which is the largest in history, with flows into cash investments such as $8.5 billion in the week of Jul 17 into money-market funds.

Table VIII-2, United States, Treasury Yields

 

8/30/13

8/22/13

5/01/13

8/30/12

8/30/06

1 M

0.02

0.01

0.03

0.12

5.16

3 M

0.03

0.03

0.06

0.10

5.05

6 M

0.05

0.06

0.08

0.14

5.14

1 Y

0.13

0.14

0.11

0.17

5.03

2 Y

0.39

0.42

0.20

0.27

4.83

3 Y

0.79

0.82

0.30

0.35

4.76

5 Y

1.62

1.71

0.65

0.66

4.72

7 Y

2.24

2.34

1.07

1.08

4.72

10 Y

2.78

2.90

1.66

1.63

4.76

20 Y

3.46

3.63

2.44

2.36

4.98

30 Y

3.70

3.88

2.83

2.75

4.91

Source: United States Treasury http://www.treasury.gov/resource-center/data-chart-center/Pages/index.aspx

Interest rate risk is increasing in the US. Chart VI-13 of the Board of Governors provides the conventional mortgage rate for a fixed-rate 30-year mortgage. The rate stood at 5.87 percent on Jan 8, 2004, increasing to 6.79 percent on Jul 6, 2006. The rate bottomed at 3.35 percent on May 2, 2013. Fear of duration risk in longer maturities such as mortgage-backed securities caused continuing increases in the conventional mortgage rate that rose to 4.51 percent on Jul 11, 2013 and 4.51 percent on Aug 29, 2013, which is the last data point in Chart VI-13.

clip_image001

Chart VI-13, US, Conventional Mortgage Rate, Jan 8, 2004 to Jan 29, 2013

Source: Board of Governors of the Federal Reserve System

http://www.federalreserve.gov/releases/h15/update/

The major reason and channel of transmission of unconventional monetary policy is through expectations of inflation. Fisher (1930) provided theoretical and historical relation of interest rates and inflation. Let in be the nominal interest rate, ir the real or inflation-adjusted interest rate and πe the expectation of inflation in the time term of the interest rate, which are all expressed as proportions. The following expression provides the relation of real and nominal interest rates and the expectation of inflation:

(1 + ir) = (1 + in)/(1 + πe) (1)

That is, the real interest rate equals the nominal interest rate discounted by the expectation of inflation in time term of the interest rate. Fisher (1933) analyzed the devastating effect of deflation on debts. Nominal debt contracts remained at original principal interest but net worth and income of debtors contracted during deflation. Real interest rates increase during declining inflation. For example, if the interest rate is 3 percent and prices decline 0.2 percent, equation (1) calculates the real interest rate as:

(1 +0.03)/(1 – 0.02) = 1.03/(0.998) = 1.032

That is, the real rate of interest is (1.032 – 1) 100 or 3.2 percent. If inflation were 2 percent, the real rate of interest would be 0.98 percent, or about 1.0 percent {[(1.03/1.02) -1]100 = 0.98%}.

The yield of the one-year Treasury security was quoted in the Wall Street Journal at 0.114 percent on Fri May 17, 2013 (http://online.wsj.com/mdc/page/marketsdata.html?mod=WSJ_topnav_marketdata_main). The expected rate of inflation πe in the next twelve months is not observed. Assume that it would be equal to the rate of inflation in the past twelve months estimated by the Bureau of Economic Analysis (BLS) at 1.1 percent (http://www.bls.gov/cpi/). The real rate of interest would be obtained as follows:

(1 + 0.00114)/(1 + 0.011) = (1 + rr) = 0.9902

That is, ir is equal to 1 – 0.9902 or minus 0.98 percent. Investing in a one-year Treasury security results in a loss of 0.98 percent relative to inflation. The objective of unconventional monetary policy of zero interest rates is to induce consumption and investment because of the loss to inflation of riskless financial assets. Policy would be truly irresponsible if it intended to increase inflationary expectations or πe. The result could be the same rate of unemployment with higher inflation (Kydland and Prescott 1977).

Current focus is on “tapering” quantitative easing by the Federal Open Market Committee (FOMC). There is sharp distinction between the two measures of unconventional monetary policy: (1) fixing of the overnight rate of fed funds at 0 to ¼ percent; and (2) outright purchase of Treasury and agency securities and mortgage-backed securities for the balance sheet of the Federal Reserve. Market are overreacting to the so-called “tapering” of outright purchases of $85 billion of securities per month for the balance sheet of the Fed. What really matters in the statement of the Federal Open Market Committee (FOMC) on Jul 31, 2013, is interest rates of fed funds at 0 to ¼ percent for the foreseeable future, even with paring of purchases of longer term bonds for the portfolio of the Fed (http://www.federalreserve.gov/newsevents/press/monetary/20130731a.htm):

“To support continued progress toward maximum employment and price stability, the Committee today reaffirmed its view that a highly accommodative stance of monetary policy will remain appropriate for a considerable time after the asset purchase program ends and the economic recovery strengthens. In particular, the Committee decided to keep the target range for the federal funds rate at 0 to 1/4 percent and currently anticipates that this exceptionally low range for the federal funds rate will be appropriate at least as long as the unemployment rate remains above 6-1/2 percent, inflation between one and two years ahead is projected to be no more than a half percentage point above the Committee's 2 percent longer-run goal, and longer-term inflation expectations continue to be well anchored. In determining how long to maintain a highly accommodative stance of monetary policy, the Committee will also consider other information, including additional measures of labor market conditions, indicators of inflation pressures and inflation expectations, and readings on financial developments. When the Committee decides to begin to remove policy accommodation, it will take a balanced approach consistent with its longer-run goals of maximum employment and inflation of 2 percent.” (emphasis added).

In delivering the biannual report on monetary policy (Board of Governors 2013Jul17), Chairman Bernanke (2013Jul17) advised Congress that:

“Instead, we are providing additional policy accommodation through two distinct yet complementary policy tools. The first tool is expanding the Federal Reserve's portfolio of longer-term Treasury securities and agency mortgage-backed securities (MBS); we are currently purchasing $40 billion per month in agency MBS and $45 billion per month in Treasuries. We are using asset purchases and the resulting expansion of the Federal Reserve's balance sheet primarily to increase the near-term momentum of the economy, with the specific goal of achieving a substantial improvement in the outlook for the labor market in a context of price stability. We have made some progress toward this goal, and, with inflation subdued, we intend to continue our purchases until a substantial improvement in the labor market outlook has been realized. We are relying on near-zero short-term interest rates, together with our forward guidance that rates will continue to be exceptionally low--our second tool--to help maintain a high degree of monetary accommodation for an extended period after asset purchases end, even as the economic recovery strengthens and unemployment declines toward more-normal levels. In appropriate combination, these two tools can provide the high level of policy accommodation needed to promote a stronger economic recovery with price stability.

The Committee's decisions regarding the asset purchase program (and the overall stance of monetary policy) depend on our assessment of the economic outlook and of the cumulative progress toward our objectives. Of course, economic forecasts must be revised when new information arrives and are thus necessarily provisional.”

Friedman (1953) argues there are three lags in effects of monetary policy: (1) between the need for action and recognition of the need; (2) the recognition of the need and taking of actions; and (3) taking of action and actual effects. Friedman (1953) finds that the combination of these lags with insufficient knowledge of the current and future behavior of the economy causes discretionary economic policy to increase instability of the economy or standard deviations of real income σy and prices σp. Policy attempts to circumvent the lags by policy impulses based on forecasts. We are all naïve about forecasting. Data are available with lags and revised to maintain high standards of estimation. Policy simulation models estimate economic relations with structures prevailing before simulations of policy impulses such that parameters change as discovered by Lucas (1977). Economic agents adjust their behavior in ways that cause opposite results from those intended by optimal control policy as discovered by Kydland and Prescott (1977). Advance guidance attempts to circumvent expectations by economic agents that could reverse policy impulses but is of dubious effectiveness. There is strong case for using rules instead of discretionary authorities in monetary policy (http://cmpassocregulationblog.blogspot.com/search?q=rules+versus+authorities).

The key policy is maintaining fed funds rate between 0 and ¼ percent. An increase in fed funds rates could cause flight out of risk financial markets worldwide. There is no exit from this policy without major financial market repercussions. Indefinite financial repression induces carry trades with high leverage, risks and illiquidity.

A competing event is the high level of valuations of risk financial assets (http://cmpassocregulationblog.blogspot.com/2013/01/peaking-valuation-of-risk-financial.html). Matt Jarzemsky, writing on Dow industrials set record,” on Mar 5, 2013, published in the Wall Street Journal (http://professional.wsj.com/article/SB10001424127887324156204578275560657416332.html), analyzes that the DJIA broke the closing high of 14,164.53 set on Oct 9, 2007, and subsequently also broke the intraday high of 14,198.10 reached on Oct 11, 2007. The DJIA closed at 14,810.31

on Fri Aug 30, 2013, which is higher by 4.6 percent than the value of 14,164.53 reached on Oct 9, 2007 and higher by 4.3 percent than the value of 14,198.10 reached on Oct 11, 2007. Values of risk financial are approaching or exceeding historical highs.

Jon Hilsenrath, writing on “Jobs upturn isn’t enough to satisfy Fed,” on Mar 8, 2013, published in the Wall Street Journal (http://professional.wsj.com/article/SB10001424127887324582804578348293647760204.html), finds that much stronger labor market conditions are required for the Fed to end quantitative easing. Unconventional monetary policy with zero interest rates and quantitative easing is quite difficult to unwind because of the adverse effects of raising interest rates on valuations of risk financial assets and home prices, including the very own valuation of the securities held outright in the Fed balance sheet. Gradual unwinding of 1 percent fed funds rates from Jun 2003 to Jun 2004 by seventeen consecutive increases of 25 percentage points from Jun 2004 to Jun 2006 to reach 5.25 percent caused default of subprime mortgages and adjustable-rate mortgages linked to the overnight fed funds rate. The zero interest rate has penalized liquidity and increased risks by inducing carry trades from zero interest rates to speculative positions in risk financial assets. There is no exit from zero interest rates without provoking another financial crash.

The carry trade from zero interest rates to leveraged positions in risk financial assets had proved strongest for commodity exposures but US equities have regained leadership. The DJIA has increased 52.9 percent since the trough of the sovereign debt crisis in Europe on Jul 2, 2010 to Aug 30, 2013; S&P 500 has gained 59.7 percent; and DAX 42.9 percent. Before the current round of risk aversion, almost all assets in the column “∆% Trough to 8/30/13” had double digit gains relative to the trough around Jul 2, 2010 followed by negative performance but now some valuations of equity indexes show varying behavior: China’s Shanghai Composite is 11.9 percent below the trough; Japan’s Nikkei Average is 51.7 percent above the trough; DJ Asia Pacific TSM is 16.2 percent above the trough; Dow Global is 28.1 percent above the trough; STOXX 50 of 50 blue-chip European equities (http://www.stoxx.com/indices/index_information.html?symbol=sx5E) is 16.3 percent above the trough; and NYSE Financial Index is 34.2 percent above the trough. DJ UBS Commodities is 5.2 percent above the trough. DAX index of German equities (http://www.bloomberg.com/quote/DAX:IND) is 42.9 percent above the trough. Japan’s Nikkei Average is 51.7 percent above the trough on Aug 31, 2010 and 17.5 percent above the peak on Apr 5, 2010. The Nikkei Average closed at 13,388.86 on Fri Aug 30, 2013 (http://professional.wsj.com/mdc/public/page/marketsdata.html?mod=WSJ_PRO_hps_marketdata), which is 30.6 percent higher than 10,254.43 on Mar 11, 2011, on the date of the Tōhoku or Great East Japan Earthquake/tsunami. Global risk aversion erased the earlier gains of the Nikkei. The dollar depreciated by 10.9 percent relative to the euro and even higher before the new bout of sovereign risk issues in Europe. The column “∆% week to 8/30/13” in Table VI-4 shows increase of 2.0 percent in the week for China’s Shanghai Composite. DJ Asia Pacific decreased 1.2 percent. NYSE Financial decreased 3.1 percent in the week. DJ UBS Commodities increased 0.2 percent. Dow Global decreased 2.7 percent in the week of Aug 30, 2013. The DJIA decreased 1.3 percent and S&P 500 decreased 1.8 percent. DAX of Germany decreased 3.7 percent. STOXX 50 decreased 2.0 percent. The USD appreciated 1.2 percent. There are still high uncertainties on European sovereign risks and banking soundness, US and world growth slowdown and China’s growth tradeoffs. Sovereign problems in the “periphery” of Europe and fears of slower growth in Asia and the US cause risk aversion with trading caution instead of more aggressive risk exposures. There is a fundamental change in Table VI-4 from the relatively upward trend with oscillations since the sovereign risk event of Apr-Jul 2010. Performance is best assessed in the column “∆% Peak to 8/30/13” that provides the percentage change from the peak in Apr 2010 before the sovereign risk event to Aug 30, 2013. Most risk financial assets had gained not only relative to the trough as shown in column “∆% Trough to 8/30/13” but also relative to the peak in column “∆% Peak to 8/30/13.” There are now several equity indexes above the peak in Table VI-4: DJIA 32.2 percent, S&P 500 34.1 percent, DAX 28.0 percent, Dow Global 4.5 percent, DJ Asia Pacific 1.7 percent, NYSE Financial Index (http://www.nyse.com/about/listed/nykid.shtml) 6.9 percent and Nikkei Average 17.5 percent. There are two equity index below the peak: Shanghai Composite by 33.7 percent and STOXX 50 by 1.5 percent. DJ UBS Commodities Index is now 10.1 percent below the peak. The US dollar strengthened 12.6 percent relative to the peak. The factors of risk aversion have adversely affected the performance of risk financial assets. The performance relative to the peak in Apr 2010 is more important than the performance relative to the trough around early Jul 2010 because improvement could signal that conditions have returned to normal levels before European sovereign doubts in Apr 2010. Alexandra Scaggs, writing on “Tepid profits, roaring stocks,” on May 16, 2013, published in the Wall Street Journal (http://online.wsj.com/article/SB10001424127887323398204578487460105747412.html), analyzes stabilization of earnings growth: 70 percent of 458 reporting companies in the S&P 500 stock index reported earnings above forecasts but sales fell 0.2 percent relative to forecasts of increase of 0.5 percent. Paul Vigna, writing on “Earnings are a margin story but for how long,” on May 17, 2013, published in the Wall Street Journal (http://blogs.wsj.com/moneybeat/2013/05/17/earnings-are-a-margin-story-but-for-how-long/), analyzes that corporate profits increase with stagnating sales while companies manage costs tightly. More than 90 percent of S&P components reported moderate increase of earnings of 3.7 percent in IQ2013 relative to IQ2012 with decline of sales of 0.2 percent. Earnings and sales have been in declining trend. In IVQ2009, growth of earnings reached 104 percent and sales jumped 13 percent. Net margins reached 8.92 percent in IQ2013, which is almost the same at 8.95 percent in IIIQ2006. Operating margins are 9.58 percent. There is concern by market participants that reversion of margins to the mean could exert pressure on earnings unless there is more accelerated growth of sales. Vigna (op. cit.) finds sales growth limited by weak economic growth. Kate Linebaugh, writing on “Falling revenue dings stocks,” on Oct 20, 2012, published in the Wall Street Journal (http://professional.wsj.com/article/SB10000872396390444592704578066933466076070.html?mod=WSJPRO_hpp_LEFTTopStories), identifies a key financial vulnerability: falling revenues across markets for United States reporting companies. Global economic slowdown is reducing corporate sales and squeezing corporate strategies. Linebaugh quotes data from Thomson Reuters that 100 companies of the S&P 500 index have reported declining revenue only 1 percent higher in Jun-Sep 2012 relative to Jun-Sep 2011 but about 60 percent of the companies are reporting lower sales than expected by analysts with expectation that revenue for the S&P 500 will be lower in Jun-Sep 2012 for the entities represented in the index. Results of US companies are likely repeated worldwide. Future company cash flows derive from investment projects. In IQ1980, gross private domestic investment in the US was $951.6 billion of 2009 dollars, growing to $1,143.0 billion in IVQ1986 or 20.1 percent. Real gross private domestic investment in the US decreased 2.9 percent from $2,605.2 billion of 2009 dollars in IVQ2007 to $2,529.2 billion in IIQ2013. Real private fixed investment fell 5.0 percent from $2,586.3 billion of 2009 dollars in IVQ2007 to $2,455.8 billion in IIQ2013. Growth of real private investment in is mediocre for all but four quarters from IIQ2011 to IQ2012 (Section I and earlier http://cmpassocregulationblog.blogspot.com/2013/08/risks-of-steepening-yield-curve-and.html). Profits after taxes with inventory valuation adjustment (IVA) and capital consumption adjustment (CCA) increased by 100.3 percent in nominal terms from IVQ2007 to IQ2013 while net dividends increased 24.6 percent and undistributed corporate profits swelled 280.2 percent from $107.7 billion in IQ2007 to $409.5 billion in IIQ2013 and changed signs from minus $55.9 billion in current dollars in IVQ2007. The investment decision of United States corporations has been fractured in the current economic cycle in preference of cash. Corporate profits with IVA and CCA fell $26.6 billion in IQ2013 after increasing $34.9 billion in IVQ2012 and $13.9 billion in IIIQ2012. Corporate profits with IVA and CCA rebounded with $78.3 billion in IIQ2013. Profits after tax with IVA and CCA fell $1.7 billion in IQ2013 after increasing $40.8 billion in IVQ2012 and $4.5 billion in IIIQ2012. In IIQ2013, profits after tax with IVA and CCA increased $67.8 billion. Anticipation of higher taxes in the “fiscal cliff” episode caused increase of $120.9 billion in net dividends in IVQ2012 followed with adjustment in the form of decrease of net dividends by $103.8 billion in IQ2013, rebounding with $273.8 billion in IIQ2013. There is similar decrease of $80.1 billion in undistributed profits with IVA and CCA in IVQ2012 followed by increase of $102.1 billion in IQ2013 and decline of $205.9 billion in IIQ2013. Undistributed profits of US corporations swelled 280.2 percent from $107.7 billion IQ2007 to $409.5 billion in IIQ2013 and changed signs from minus $55.9 billion in billion in IVQ2007 (Section IA2). In IQ2013, corporate profits with inventory valuation and capital consumption adjustment fell $26.6 billion relative to IVQ2012, from $2047.2 billion to $2020.6 billion at the quarterly rate of minus 1.3 percent. In IIQ2013, corporate profits with IVA and CCA increased $78.3 billion from $2020.6 billion in IQ2013 to $2098.9 billion at the quarterly rate of 3.9 percent (http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_2nd.pdf). Uncertainty originating in fiscal, regulatory and monetary policy causes wide swings in expectations and decisions by the private sector with adverse effects on investment, real economic activity and employment. The investment decision of US business is fractured.

It may be quite painful to exit QE→∞ or use of the balance sheet of the central together with zero interest rates forever. The basic valuation equation that is also used in capital budgeting postulates that the value of stocks or of an investment project is given by:

clip_image002

Where Rτ is expected revenue in the time horizon from τ =1 to T; Cτ denotes costs; and ρ is an appropriate rate of discount. In words, the value today of a stock or investment project is the net revenue, or revenue less costs, in the investment period from τ =1 to T discounted to the present by an appropriate rate of discount. In the current weak economy, revenues have been increasing more slowly than anticipated in investment plans. An increase in interest rates would affect discount rates used in calculations of present value, resulting in frustration of investment decisions. If V represents value of the stock or investment project, as ρ → ∞, meaning that interest rates increase without bound, then V → 0, or

clip_image002[1]

declines. Equally, decline in expected revenue from the stock or project, Rτ, causes decline in valuation. An intriguing issue is the difference in performance of valuations of risk financial assets and economic growth and employment. Paul A. Samuelson (http://www.nobelprize.org/nobel_prizes/economics/laureates/1970/samuelson-bio.html) popularized the view of the elusive relation between stock markets and economic activity in an often-quoted phrase “the stock market has predicted nine of the last five recessions.” In the presence of zero interest rates forever, valuations of risk financial assets are likely to differ from the performance of the overall economy. The interrelations of financial and economic variables prove difficult to analyze and measure.

Table VI-4, Stock Indexes, Commodities, Dollar and 10-Year Treasury  

 

Peak

Trough

∆% to Trough

∆% Peak to 8/30/

/13

∆% Week 8/30/13

∆% Trough to 8/30/

13

DJIA

4/26/
10

7/2/10

-13.6

32.2

-1.3

52.9

S&P 500

4/23/
10

7/20/
10

-16.0

34.1

-1.8

59.7

NYSE Finance

4/15/
10

7/2/10

-20.3

6.9

-3.1

34.2

Dow Global

4/15/
10

7/2/10

-18.4

4.5

-2.7

28.1

Asia Pacific

4/15/
10

7/2/10

-12.5

1.7

-1.2

16.2

Japan Nikkei Aver.

4/05/
10

8/31/
10

-22.5

17.5

-2.0

51.7

China Shang.

4/15/
10

7/02
/10

-24.7

-33.7

2.0

-11.9

STOXX 50

4/15/10

7/2/10

-15.3

-1.5

-2.0

16.3

DAX

4/26/
10

5/25/
10

-10.5

28.0

-3.7

42.9

Dollar
Euro

11/25 2009

6/7
2010

21.2

12.6

1.2

-10.9

DJ UBS Comm.

1/6/
10

7/2/10

-14.5

-10.1

0.2

5.2

10-Year T Note

4/5/
10

4/6/10

3.986

2.784

   

T: trough; Dollar: positive sign appreciation relative to euro (less dollars paid per euro), negative sign depreciation relative to euro (more dollars paid per euro)

Source: http://professional.wsj.com/mdc/page/marketsdata.html?mod=WSJ_hps_marketdata

ESII Mediocre United States Economic Growth. Revisions and enhancements of United States GDP and personal income accounts by the Bureau of Economic Analysis (BEA) (http://bea.gov/iTable/index_nipa.cfm http://bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_adv.pdf http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_2nd.pdf http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0713.pdf http://bea.gov/newsreleases/national/pi/2013/pdf/pi0613.pdf) provide important information on long-term growth and cyclical behavior. Table Summary provides relevant data.

  1. Long-term. US GDP grew at the average yearly rate of 3.3 percent from 1929 to 2012 and at 3.2 percent from 1947 to 2012. There were periodic contractions or recessions in this period but the economy grew at faster rates in the subsequent expansions, maintaining long-term economic growth at trend.
  2. Cycles. The combined contraction of GDP in the two almost consecutive recessions in the early 1980s is 4.7 percent. The contraction of US GDP from IVQ2007 to IIQ2009 during the global recession was 4.3 percent. The critical difference in the expansion is growth at average 7.8 percent in annual equivalent in the first four quarters of recovery from IQ1983 to IVQ1983. The average rate of growth of GDP in four cyclical expansions in the postwar period is 7.7 percent. In contrast, the rate of growth in the first four quarters from IIIQ2009 to IIQ2010 was only 2.7 percent. Average annual equivalent growth in the expansion from IQ1983 to IQ1986 was 5.7 percent. In contrast, average annual equivalent growth in the expansion from IIIQ2009 to IIQ2013 was only 2.7 percent. The US appears to have lost its dynamism of income growth and employment creation.

Table Summary, Long-term and Cyclical Growth of GDP, Real Disposable Income and Real Disposable Income per Capita

 

GDP

 

Long-Term

   

1929-2012

3.3

 

1947-2012

3.2

 

Cyclical Contractions ∆%

   

IQ1980 to IIIQ1980, IIIQ1981 to IVQ1982

-4.7

 

IVQ2007 to IIQ2009

-4.3

 

Cyclical Expansions Average Annual Equivalent ∆%

   

IQ1983 to IQ1986

5.7

 

First Four Quarters IQ1983 to IVQ1983

7.8

 

IIIQ2009 to IIQ2013

2.2

 

First Four Quarters IIIQ2009 to IIQ2010

2.7

 
 

Real Disposable Income

Real Disposable Income per Capita

Long-Term

   

1929-2012

3.2

2.0

1947-1999

3.7

2.3

Whole Cycles

   

1980-1989

3.5

2.6

2006-2012

1.4

0.6

Source: Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_2nd.pdf

The revisions and enhancements of United States GDP and personal income accounts by the Bureau of Economic Analysis (BEA) (http://bea.gov/iTable/index_nipa.cfm http://bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_adv.pdf http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_2nd.pdf http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0713.pdf http://bea.gov/newsreleases/national/pi/2013/pdf/pi0613.pdf) also provide critical information in assessing the current rhythm of US economic growth. The economy appears to be moving at a pace from 1.8 to 1.9 percent per year. Table Summary GDP provides the data.

1. Average Annual Growth in the Past Six Quarters. GDP growth in the four quarters of 2012 and the first two quarters of 2013 accumulated to 2.9 percent. This growth is equivalent to 1.9 percent per year, obtained by dividing GDP in IIQ2013 of $15,681.0 by GDP in IVQ2011 of $15,242.1 and compounding by 4/6: {[($15,681.0/$15,242.1)4/6 -1]100 = 1.9.

2. Average Annual Growth in the First Two Quarters of 2013. GDP growth in the first two quarters of 2013 accumulated to 0.9 percent that is equivalent to 1.8 percent in a year. This is obtained by dividing GDP in IIQ2013 of $15,681.0 by GDP in IVQ2012 of $15,539.6 and compounding by 4/2: {[($15,681.0/$15,539.6)4/2 -1]100 =1.8%}. The US economy grew 1.6 percent in IIQ2013 relative to the same quarter a year earlier in IIQ2012. Another important revelation of the revisions and enhancements is that GDP was flat in IVQ2012, which is just at the borderline of contraction.

Table Summary GDP, US, Real GDP and Percentage Change Relative to IVQ2007 and Prior Quarter, Billions Chained 2005 Dollars and ∆%

 

Real GDP, Billions Chained 2005 Dollars

∆% Relative to IVQ2007

∆% Relative to Prior Quarter

∆%
over
Year Earlier

IVQ2007

14,996.1

NA

NA

1.9

IVQ2011

15,242.1

1.6

1.2

2.0

IQ2012

15,381.6

2.6

0.9

3.3

IIQ2012

15,427.7

2.9

0.3

2.8

IIIQ2012

15,534.0

3.6

0.7

3.1

IVQ2012

15,539.6

3.6

0.0

2.0

IQ2013

15,583.9

3.9

0.3

1.3

IIQ2013

15,681.0

4.6

0.6

1.6

Cumulative ∆% IQ2012 to IIQ2013

2.9

 

2.8

 

Annual Equivalent ∆%

1.9

 

1.9

 

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_2nd.pdf

ESIII Contracting Real Private Fixed Investment. The United States economy has grown at the average yearly rate of 3 percent per year and 2 percent per year in per capita terms from 1870 to 2010, as measured by Lucas (2011May). An important characteristic of the economic cycle in the US has been rapid growth in the initial phase of expansion after recessions.

Inferior performance of the US economy and labor markets is the critical current issue of analysis and policy design. Long-term economic performance in the United States consisted of trend growth of GDP at 3 percent per year and of per capita GDP at 2 percent per year as measured for 1870 to 2010 by Robert E Lucas (2011May). The economy returned to trend growth after adverse events such as wars and recessions. The key characteristic of adversities such as recessions was much higher rates of growth in expansion periods that permitted the economy to recover output, income and employment losses that occurred during the contractions. Over the business cycle, the economy compensated the losses of contractions with higher growth in expansions to maintain trend growth of GDP of 3 percent and of GDP per capita of 2 percent. US economic growth has been at only 2.2 percent on average in the cyclical expansion in the 16 quarters from IIIQ2009 to IIQ2013 (Section I and earlier http://cmpassocregulationblog.blogspot.com/2013/08/interest-rate-risks-duration-dumping.html). Boskin (2010Sep) measures that the US economy grew at 6.2 percent in the first four quarters and 4.5 percent in the first 12 quarters after the trough in the second quarter of 1975; and at 7.7 percent in the first four quarters and 5.8 percent in the first 12 quarters after the trough in the first quarter of 1983 (Professor Michael J. Boskin, Summer of Discontent, Wall Street Journal, Sep 2, 2010 http://professional.wsj.com/article/SB10001424052748703882304575465462926649950.html). (http://cmpassocregulationblog.blogspot.com/2013/06/twenty-eight-million-unemployed-or.html). The average of 7.7 percent in the first four quarters of major cyclical expansions is in contrast with the rate of growth in the first four quarters of the expansion from IIIQ2009 to IIQ2010 of only 2.7 percent obtained by diving GDP of $14,738.0 billion in IIQ2010 by GDP of $14,356.9 billion in IIQ2009 {[$14,738.0/$14,356.9 -1]100 = 2.7%], or accumulating the quarter on quarter growth rates (Section I and earlier http://cmpassocregulationblog.blogspot.com/2013/08/risks-of-steepening-yield-curve-and.html). The expansion from IQ1983 to IVQ1985 was at the average annual growth rate of 5.7 percent and at 7.8 percent from IQ1983 to IVQ1983 (Section I and earlier http://cmpassocregulationblog.blogspot.com/2013/08/risks-of-steepening-yield-curve-and.html). As a result, there are 28.3 million unemployed or underemployed in the United States for an effective unemployment rate of 17.4 percent (http://cmpassocregulationblog.blogspot.com/2013/08/risks-of-steepening-yield-curve-and.html).

Table IA1-1 provides quarterly seasonally adjusted annual rates (SAAR) of growth of private fixed investment for the recessions of the 1980s and the current economic cycle. In the cyclical expansion beginning in IQ1983 (http://www.nber.org/cycles.html), real private fixed investment in the United States grew at the average annual rate of 14.7 percent in the first eight quarters from IQ1983 to IVQ1984. Growth rates fell to an average of 2.2 percent in the following eight quarters from IQ1985 to IVQ1986. There were only two quarters of contraction of private fixed investment from IQ1983 to IVQ1986. There is quite different behavior of private fixed investment in the sixteen quarters of cyclical expansion from IIIQ2009 to IIQ2013. The average annual growth rate in the first eight quarters of expansion from IIIQ2009 to IIQ2011 was 3.3 percent, which is significantly lower than 14.7 percent in the first eight quarters of expansion from IQ1983 to IVQ1984. There is only strong growth of private fixed investment in the four quarters of expansion from IIQ2011 to IQ2012 at the average annual rate of 10.5 percent. Growth has fallen from the SAAR of 14.8 percent in IIIQ2011 to 2.7 percent in IIIQ2012, recovering to 11.6 percent in IVQ2012 and falling to minus 1.5 percent in IQ2013. The SAAR of fixed investment rose to 6.0 percent in IIQ2013. Sudeep Reddy and Scott Thurm, writing on “Investment falls off a cliff,” on Nov 18, 2012, published in the Wall Street Journal (http://professional.wsj.com/article/SB10001424127887324595904578123593211825394.html?mod=WSJPRO_hpp_LEFTTopStories) analyze the decline of private investment in the US and inform that a review by the Wall Street Journal of filing and conference calls finds that 40 of the largest publicly traded corporations in the US have announced intentions to reduce capital expenditures in 2012. The SAAR of real private fixed investment jumped to 11.6 percent in IVQ2012 but declined to minus 1.5 percent in IQ2013, recovering to 6.0 percent in IIQ2013.

Table IA1-1, US, Quarterly Growth Rates of Real Private Fixed Investment, % Annual Equivalent SA

Q

1981

1982

1983

1984

2008

2009

2010

I

3.8

-12.2

9.4

13.1

-7.1

-27.4

0.8

II

3.2

-12.1

16.0

16.6

-5.5

-14.2

13.6

III

0.1

-9.3

24.4

8.2

-12.1

-0.5

-0.4

IV

-1.5

0.2

24.3

7.3

-23.9

-2.8

8.5

       

1985

   

2011

I

     

3.7

   

-0.5

II

     

5.2

   

8.6

III

     

-1.6

   

14.8

IV

     

7.8

   

10.0

       

1986

   

2012

I

     

1.1

   

8.6

II

     

0.1

   

4.7

III

     

-1.8

   

2.7

IV

     

3.1

   

11.6

       

1987

   

2013

I

     

-6.7

   

-1.5

II

     

6.3

   

6.0

III

     

7.1

     

IV

     

-0.2

     

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Chart IA1-1 of the US Bureau of Economic Analysis (BEA) provides seasonally adjusted annual rates of growth of real private fixed investment from 1981 to 1986. Growth rates recovered sharply during the first eight quarters, which was essential in returning the economy to trend growth and eliminating unemployment and underemployment accumulated during the contractions.

clip_image003

Chart IA1-1, US, Real Private Fixed Investment, Seasonally-Adjusted Annual Rates Percent Change from Prior Quarter, 1981-1986

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Weak behavior of real private fixed investment from 2007 to 2012 is shown in Chart IA1-2. Growth rates of real private fixed investment were much lower during the initial phase of expansion in the current economic cycle and have entered sharp trend of decline.

clip_image004

Chart IA1-2, US, Real Private Fixed Investment, Seasonally-Adjusted Annual Rates Percent Change from Prior Quarter, 2007-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Table IA1-2 provides real private fixed investment at seasonally adjusted annual rates from IVQ2007 to IIQ2013 or for the complete economic cycle. The first column provides the quarter, the second column percentage change relative to IVQ2007, the third column the quarter percentage change in the quarter relative to the prior quarter and the final column percentage change in a quarter relative to the same quarter a year earlier. In IQ1980, gross private domestic investment in the US was $951.6 billion of 2009 dollars, growing to $1,143.0 billion in IVQ1986 or 20.1 percent. Real gross private domestic investment in the US decreased 2.9 percent from $2,605.2 billion of 2009 dollars in IVQ2007 to $2,529.2 billion in IIQ2013. As shown in Table IAI-2, real private fixed investment fell 5.0 percent from $2,586.3 billion of 2009 dollars in IVQ2007 to $2,455.8 billion in IIQ2013. Growth of real private investment in Table IA1-2 is mediocre for all but four quarters from IIQ2011 to IQ2012.

Table IA1-2, US, Real Private Fixed Investment and Percentage Change Relative to IVQ2007 and Prior Quarter, Billions of Chained 2005 Dollars and ∆%

 

Real PFI, Billions Chained 2005 Dollars

∆% Relative to IVQ2007

∆% Relative to Prior Quarter

∆%
over
Year Earlier

IVQ2007

2586.3

NA

-1.2

-1.4

IQ2008

2539.1

-1.8

-1.8

-3.0

IIQ2008

2503.4

-3.2

-1.4

-4.6

IIIQ2008

2424.1

-6.3

-3.2

-7.1

IV2008

2263.8

-12.5

-6.6

-12.5

IQ2009

2089.3

-19.2

-7.7

-17.7

IIQ2009

2011.0

-22.2

-3.7

-19.7

IIIQ2009

2008.4

-22.3

-0.1

-17.1

IVQ2009

1994.1

-22.9

-0.7

-11.9

IQ2010

1997.9

-22.8

0.2

-4.4

IIQ2010

2062.8

-20.2

3.2

2.6

IIIQ2010

2060.8

-20.3

-0.1

2.6

IVQ2010

2103.1

-18.7

2.1

5.5

IQ2011

2100.7

-18.8

-0.1

5.1

IIQ2011

2144.4

-17.1

2.1

4.0

IIIQ2011

2219.8

-14.2

3.5

7.7

IVQ2011

2273.4

-12.1

2.4

8.1

IQ2012

2320.8

-10.3

2.1

10.5

IIQ2012

2347.9

-9.2

1.2

9.5

IIIQ2012

2363.5

-8.6

0.7

6.5

IVQ2012

2429.1

-6.1

2.8

6.8

IQ2013

2420.0

-6.4

-0.4

4.3

IIQ2013

2455.8

-5.0

1.5

4.6

PFI: Private Fixed Investment

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Chart IA1-3 provides real private fixed investment in billions of chained 2009 dollars from IV2007 to IIQ2013. Real private fixed investment has not recovered, stabilizing at a level in IIQ2013 that is 5.0 percent below the level in IVQ2007.

clip_image005

Chart IA1-3, US, Real Private Fixed Investment, Billions of Chained 2005 Dollars, IQ2007 to IQ2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IA1-4 provides real gross private domestic investment in chained dollars of 2005 from 1980 to 1986. Real gross private domestic investment climbed 20.1 percent in IVQ1986 above the level in IQ1980.

clip_image006

Chart IA1-4, US, Real Gross Private Domestic Investment, Billions of Chained 2005 Dollars at Seasonally Adjusted Annual Rate, 1980-1986

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IA1-5 provides real gross private domestic investment in the United States in billions of dollars of 2009 from 2006 to 2013. Gross private domestic investment reached a level in IIQ2013 that was 2.9 percent lower than the level in IVQ2007 (http://www.bea.gov/iTable/index_nipa.cfm).

clip_image007

Chart IA1-5, US, Real Gross Private Domestic Investment, Billions of Chained 2005 Dollars at Seasonally Adjusted Annual Rate, 2007-2013

Source: US Bureau of Economic Analysis http://www.bea.gov/iTable/index_nipa.cfm

ESIV Swelling Undistributed Corporate Profits. Table IA1-5 provides value added of corporate business, dividends and corporate profits in billions of current dollars at seasonally adjusted annual rates (SAAR) in IVQ2007 and IIQ2013 together with percentage changes. The last three rows of Table IA1-5 provide gross value added of nonfinancial corporate business, consumption of fixed capital and net value added in billions of chained 2009 dollars at SAARs. Deductions from gross value added of corporate profits down the rows of Table IA1-5 end with undistributed corporate profits. Profits after taxes with inventory valuation adjustment (IVA) and capital consumption adjustment (CCA) increased by 100.3 percent in nominal terms from IVQ2007 to IQ2013 while net dividends increased 24.6 percent and undistributed corporate profits swelled 280.2 percent from $107.7 billion in IQ2007 to $409.5 billion in IIQ2013 and changed signs from minus $55.9 billion in current dollars in IVQ2007. The investment decision of United States corporations has been fractured in the current economic cycle in preference of cash. Gross value added of nonfinancial corporate business adjusted for inflation increased 4.9 percent from IVQ2007 to IIQ2013, which is much lower than nominal increase of 15.3 percent in the same period for gross value added of total corporate business.

Table IA1-5, US, Value Added of Corporate Business, Corporate Profits and Dividends, IVQ2007-IQ2013

 

IVQ2007

IIQ2013

∆%

Current Billions of Dollars Seasonally Adjusted Annual Rates (SAAR)

     

Gross Value Added of Corporate Business

8,165.9

9,417.0

15.3

Consumption of Fixed Capital

1,216.5

1,415.7

16.4

Net Value Added

6,949.4

8,001.3

15.1

Compensation of Employees

4,945.8

5,349.9

8.2

Taxes on Production and Imports Less Subsidies

688.5

752.4

9.3

Net Operating Surplus

1,315.1

1,899.0

44.4

Net Interest and Misc

204.2

114.1

-44.1

Business Current Transfer Payment Net

68.9

98.1

42.4

Corporate Profits with IVA and CCA Adjustments

1,042.0

1,686.8

61.9

Taxes on Corporate Income

408.8

418.7

2.4

Profits after Tax with IVA and CCA Adjustment

633.2

1,268.1

100.3

Net Dividends

689.1

858.6

24.6

Undistributed Profits with IVA and CCA Adjustment

-55.9

409.5

NA

Billions of Chained USD 2009 SAAR

     

Gross Value Added of Nonfinancial Corporate Business

7,519.3

7,886.8

4.9

Consumption of Fixed Capital

1,066.0

1,164.7

9.3

Net Value Added

6,453.4

6,722.1

4.2

IVA: Inventory Valuation Adjustment; CCA: Capital Consumption Adjustment

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Table IA1-6 provides comparable United States value added of corporate business, corporate profits and dividends from IQ1980 to IIIQ1986. There is significant difference both in nominal and inflation-adjusted data. Between IQ1980 and IIIQ1986, profits after tax with IVA and CCA increased 68.6 percent with dividends growing 110.0 percent and undistributed profits increasing 40.0 percent. There was much higher inflation in the 1980s than in the current cycle. For example, the consumer price index for all items not seasonally adjusted increased 37.9 percent between Mar 1980 and Dec 1986 but only 11.2 percent between Dec 2007 and Jun 2013 (http://www.bls.gov/cpi/data.htm). The comparison is still valid in terms of inflation-adjusted data: gross value added of nonfinancial corporate business adjusted for inflation increased 23.7 percent between IQ1980 and IIIQ1986 but only 4.9 percent between IVQ2007 and IIQ2013 while net value added adjusted for inflation increased 22.4 percent between IQ1980 and IIIQ1986 but only 4.2 percent between IVQ2007 and IIQ2013.

Table IA1-6, US, Value Added of Corporate Business, Corporate Profits and Dividends, IQ1980-IVQ1985

 

IQ1980

IIIQ1986

∆%

Current Billions of Dollars Seasonally Adjusted Annual Rates (SAAR)

     

Gross Value Added of Corporate Business

1,654.1

2,713.5

64.0

Consumption of Fixed Capital

200.5

352.7

75.9

Net Value Added

1,453.6

2,360.9

62.4

Compensation of Employees

1,072.9

1,732.1

61.4

Taxes on Production and Imports Less Subsidies

121.5

220.9

81.8

Net Operating Surplus

259.2

408.0

57.4

Net Interest and Misc.

50.4

105.4

109.1

Business Current Transfer Payment Net

11.5

26.4

129.6

Corporate Profits with IVA and CCA Adjustments

197.2

276.2

40.1

Taxes on Corporate Income

97.0

107.3

10.6

Profits after Tax with IVA and CCA Adjustment

100.2

168.9

68.6

Net Dividends

40.9

85.9

110.0

Undistributed Profits with IVA and CCA Adjustment

59.3

83.0

40.0

Billions of Chained USD 2009 SAAR

     

Gross Value Added of Nonfinancial Corporate Business

2,952.3

3,651.9

23.7

Consumption of Fixed Capital

315.6

423.6

34.2

Net Value Added

2,636.7

3,228.3

22.4

IVA: Inventory Valuation Adjustment; CCA: Capital Consumption Adjustment

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Chart IA1-12 of the US Bureau of Economic Analysis provides quarterly corporate profits after tax and undistributed profits with IVA and CCA from 1979 to 2013. There is tightness between the series of quarterly corporate profits and undistributed profits in the 1980s with significant gap developing from 1988 and to the present with the closest approximation peaking in IVQ2005 and surrounding quarters. These gaps widened during all recessions including in 1991 and 2001 and recovered in expansions with exceptionally weak performance in the current expansion.

clip_image008

Chart IA1-14, US, Corporate Profits after Tax and Undistributed Profits with Inventory Valuation Adjustment and Capital Consumption Adjustment, Quarterly, 1979-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

ESV Stagnating Real Disposable Income. The Bureau of Economic Analysis (BEA) provides a wealth of revisions and enhancements of US personal income and outlays since 1929 (http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0613.pdf http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0713.pdf http://www.bea.gov/iTable/index_nipa.cfm). Table II-4 provides growth rates of real disposable income and real disposable income per capita in the long-term and selected periods. Real disposable income consists of after-tax income adjusted for inflation. Real disposable income per capita is income per person after taxes and inflation. There is remarkable long-term trend of real disposable income of 3.2 percent per year on average from 1929 to 2012 and 2.0 percent in real disposable income per capita. Real disposable income increased at the average yearly rate of 3.7 percent from 1947 to 1999 and real disposable income per capita at 2.3 percent. These rates of increase broadly accompany rates of growth of GDP. Institutional arrangements in the United States provided the environment for growth of output and income after taxes, inflation and population growth. There is significant break of growth by much lower 2.4 percent for real disposable income on average from 1999 to 2012 and 1.5 percent in real disposable per capita income. Real disposable income grew at 3.5 percent from 1980 to 1989 and real disposable per capita income at 2.6 percent. In contrast, real disposable income grew at only 1.4 percent on average from 2006 to 2012 and real disposable income at 0.6 percent. The United States has interrupted its long-term and cyclical dynamism of output, income and employment growth. Recovery of this dynamism could prove to be a major challenge.

Table II-4, Average Annual Growth Rates of Real Disposable Income (RDPI) and Real Disposable Income per Capita (RDPIPC), Percent per Year 

RDPI Average ∆%

 

     1929-2012

3.2

     1947-1999

3.7

     1999-2012

2.4

     1999-2006

3.2

     1980-1989

3.5

     2006-2012

1.4

RDPIPC Average ∆%

 

     1929-2012

2.0

     1947-1999

2.3

     1999-2012

1.5

     1999-2006

2.2

     1980-1989

2.6

     2006-2012

0.6

Source: Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Real or inflation-adjusted disposable personal income is provided in Chart II-5 from 1980 to 1989. Real disposable income after allowing for taxes and inflation grew steadily at high rates during the entire decade.

clip_image009

Chart II-5, US, Real Disposable Income, Billions of Chained 2009 Dollars, Quarterly Seasonally Adjusted at Annual Rates 1980-1989

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

In IQ2013, personal income fell at the SAAR of minus 4.1 percent; real personal income excluding current transfer receipts at minus 7.2 percent; and real disposable personal income at minus 7.9 percent (Table 6 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0713.pdf). The BEA explains as follows (page 3 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0313.pdf):

“The February and January changes in disposable personal income (DPI) mainly reflected the effect of special factors in January, such as the expiration of the “payroll tax holiday” and the acceleration of bonuses and personal dividends to November and to December in anticipation of changes in individual tax rates.”

This is the explanation for the decline in IQ2013 in Chart II-6. In IIQ2013, personal income increased at 3.9 percent, real disposable income excluding current transfer receipts at 4.6 percent and real disposable income at 3.2 percent (http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0713.pdf).

clip_image010

Chart II-6, US, Real Disposable Income, Billions of Chained 2009 Dollars, Quarterly Seasonally Adjusted at Annual Rates, 2007-2013

http://www.bea.gov/iTable/index_nipa.cfm

Chart II-7 provides percentage quarterly changes in real disposable income from the preceding period at seasonally adjusted annual rates from 1980 to 1989. Rates of changes were high during the decade with few negative changes.

clip_image011

Chart II-7, US, Real Disposable Income Percentage Change from Preceding Period at Quarterly Seasonally-Adjusted Annual Rates, 1980-1989

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart II-8 provides percentage quarterly changes in real disposable income from the preceding period at seasonally adjusted annual rates from 2007 to 2013. There has been a period of positive rates followed by decline of rates and then negative and low rates in 2011. Recovery in 2012 has not reproduced the dynamism of the brief early phase of expansion. In IVQ2012, nominal disposable personal income grew at the SAAR of 11.3 percent and real disposable personal income at 9.0 percent (http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0713.pdf), which the BEA explains as: “Personal income in November and December was boosted by accelerated and special dividend payments to persons and by accelerated bonus payments and other irregular pay in private wages and salaries in anticipation of changes in individual income tax rates. Personal income in December was also boosted by lump-sum social security benefit payments” (page 2 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi1212.pdf). In IQ2013, personal income fell at the SAAR of minus 4.1 percent; real personal income excluding current transfer receipts at minus 7.2 percent; and real disposable personal income at minus 7.9 percent (Table 6 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0713.pdf). The BEA explains as follows (page 3 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0313.pdf):

“The February and January changes in disposable personal income (DPI) mainly reflected the effect of special factors in January, such as the expiration of the “payroll tax holiday” and the acceleration of bonuses and personal dividends to November and to December in anticipation of changes in individual tax rates.”

In IIQ2013, personal income grew at 3.9 percent, real personal income excluding current transfer receipts at 4.6 percent and real disposable personal income at 3.2 percent (http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0713.pdf).

clip_image012

Chart, II-8, US, Real Disposable Income, Percentage Change from Preceding Period at Seasonally-Adjusted Annual Rates, 2007-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

In the latest available report, the Bureau of Economic Analysis (BEA) estimates US personal income in Jul 2013 at the seasonally adjusted annual rate of $14,115.0 billion, as shown in Table II-3 above (see Table 1 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0713.pdf). The major portion of personal income is compensation of employees of $8,818.3 billion, or 62.5 percent of the total. Wages and salaries are $7,099.0 billion, of which $5,911.5 billion by private industries and supplements to wages and salaries of $1,719.2 billion (employer contributions to pension and insurance funds are $1,191.0 billion and contributions to social insurance are $528.2 billion). In Jul 1985, US personal income was $3,714.8 billion at SAAR (http://www.bea.gov/iTable/index_nipa.cfm). Compensation of employees was $2,531.8 billion, or 68.2 percent of the total. Wages and salaries were $2,091.8 billion of which $1696.4 billion by private industries. Supplements to wages and salaries were $440.0 billion with employer contributions to pension and insurance funds of $282.8 billion and $157.2 billion to government social insurance. Chart II-9 provides US wages and salaries by private industries in the 1980s. Growth was robust after the interruption of the recessions.

clip_image013

Chart II-9, US, Wages and Salaries, Private Industries, Quarterly, Seasonally Adjusted at Annual Rates Billions of Dollars, 1980-1989

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart II-10 shows US wages and salaries of private industries from 2007 to 2012. There is a drop during the contraction followed by initial recovery in 2010 and then the current much weaker relative performance in 2011, 2012 and 2013.

clip_image014

Chart II-10, US, Wage and Salary Disbursement, Private Industries, Quarterly, Seasonally Adjusted at Annual Rates, Billions of Dollars 2007-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart II-11 provides finer detail with monthly wages and salaries of private industries from 2007 to 2013. Total wages and salaries decreased 1.4 percent from Dec 2012 to Jul 2013, as shown in Table II-3.

clip_image015

Chart II-11, US, Wages and Salaries, Private Industries, Monthly, Seasonally Adjusted at Annual Rates, Billions of Dollars 2007-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart II-12 provides monthly real disposable personal income per capita from 1980 to 1989. This is the ultimate measure of wellbeing in receiving income by obtaining the value per inhabitant. The measure cannot adjust for the distribution of income. Real disposable personal income per capita grew rapidly during the expansion after 1983 and continued growing during the rest of the decade.

clip_image016

Chart II-12, US, Real Disposable Per Capita Income, Monthly, Seasonally Adjusted at Annual Rates, Billions of Dollars 1980-1989

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart II-13 provides monthly real disposable personal per capita from 2007 to 2013. There was initial recovery from the drop during the global recession followed by stagnation. Real per capita disposable income increased 1.2 percent from $36,580 in chained dollars of 2009 in Oct 2012 to $37,030 in Nov 2012 and 3.1 percent to $38,170 in Dec 2012 for cumulative increase of 4.3 percent from Oct 2012 to Dec 2012. Real per capita disposable income fell 5.2 percent from $38,170 in Dec 2012 to $36,190 in Jan 2013, increasing marginally 0.8 percent to $36,497 in Feb 2013 for cumulative change of minus 0.2 percent from Oct 2012 (data at http://www.bea.gov/iTable/index_nipa.cfm). This increase is shown in a jump in the final segment in Chart II-13 with Nov-Dec 2012, decline in Jan 2013 and recovery in Feb 2013. Real per capita disposable income increased 0.4 percent from $36,497 in Feb 2013 in chained dollars of 2009 to $36,626 in Mar 2013 for cumulative increase of 0.1 percent relative to Oct 2012. Real per capita disposable income increased to $36,711 in May 2013 for gain of 0.1 percent relative to $36,668 in Apr 2013 and 0.4 percent from Oct 2012. Real disposable per capita income increased to $36,619 in Jun 2013 for decrease of 0.3 percent relative to May 2013 and increase of 0.1 percent relative to Oct 2012. Real disposable income per capita increased 0.0 percent from $36,619 in Jun 2013 to $36,626 in Jul 2013 and 0.1 percent relative to $36,580 in Oct 2013. BEA explains as: “Personal income in November and December was boosted by accelerated and special dividend payments to persons and by accelerated bonus payments and other irregular pay in private wages and salaries in anticipation of changes in individual income tax rates. Personal income in December was also boosted by lump-sum social security benefit payments” (page 2 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi1212.pdf pages 1-2 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0113.pdf). The Bureau of Economic Analysis explains as (http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0213.pdf 2-3): “The January estimate of employee contributions for government social insurance reflected the expiration of the “payroll tax holiday,” that increased the social security contribution rate for employees and self-employed workers by 2.0 percentage points, or $114.1 billion at an annual rate. For additional information, see FAQ on “How did the expiration of the payroll tax holiday affect personal income for January 2013?” at www.bea.gov. The January estimate of employee contributions for government social insurance also reflected an increase in the monthly premiums paid by participants in the supplementary medical insurance program, in the hospital insurance provisions of the Patient Protection and Affordable Care Act, and in the social security taxable wage base.”

The increase was provided in the “fiscal cliff” law H.R. 8 American Taxpayer Relief Act of 2012 (http://www.gpo.gov/fdsys/pkg/BILLS-112hr8eas/pdf/BILLS-112hr8eas.pdf).

The BEA explains as follows (page 3 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0313.pdf):

“The February and January changes in disposable personal income (DPI) mainly reflected the effect of special factors in January, such as the expiration of the “payroll tax holiday” and the acceleration of bonuses and personal dividends to November and to December in anticipation of changes in individual tax rates.”

clip_image017

Chart II-13, US, Real Disposable Per Capita Income, Monthly, Seasonally Adjusted at Annual Rates, Billions of Dollars 2007-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

ESVI Financial Repression. McKinnon (1973) and Shaw (1974) argue that legal restrictions on financial institutions can be detrimental to economic development. “Financial repression” is the term used in the economic literature for these restrictions (see Pelaez and Pelaez, Globalization and the State, Vol. II (2008b), 81-6). Interest rate ceilings on deposits and loans have been commonly used. Prohibition of payment of interest on demand deposits and ceilings on interest rates on time deposits were imposed by the Banking Act of 1933. These measures were justified by arguments that the banking panic of the 1930s was caused by competitive rates on bank deposits that led banks to engage in high-risk loans (Friedman, 1970, 18; see Pelaez and Pelaez, Regulation of Banks and Finance (2009b), 74-5). The objective of policy was to prevent unsound loans in banks. Savings and loan institutions complained of unfair competition from commercial banks that led to continuing controls with the objective of directing savings toward residential construction. Friedman (1970, 15) argues that controls were passive during periods when rates implied on demand deposit were zero or lower and when Regulation Q ceilings on time deposits were above market rates on time deposits. The Great Inflation or stagflation of the 1960s and 1970s changed the relevance of Regulation Q.

Most regulatory actions trigger compensatory measures by the private sector that result in outcomes that are different from those intended by regulation (Kydland and Prescott 1977). Banks offered services to their customers and loans at rates lower than market rates to compensate for the prohibition to pay interest on demand deposits (Friedman 1970, 24). The prohibition of interest on demand deposits was eventually lifted in recent times. In the second half of the 1960s, already in the beginning of the Great Inflation (DeLong 1997), market rates rose above the ceilings of Regulation Q because of higher inflation. Nobody desires savings allocated to time or savings deposits that pay less than expected inflation. This is a fact currently with zero interest rates and consumer price inflation of 2.0 percent in the 12 months ending in Feb 2013 (http://www.bls.gov/cpi/) but rising during waves of carry trades from zero interest rates to commodity futures exposures (http://cmpassocregulationblog.blogspot.com/2013/03/recovery-without-hiring-ten-million.html). Funding problems motivated compensatory measures by banks. Money-center banks developed the large certificate of deposit (CD) to accommodate increasing volumes of loan demand by customers. As Friedman (1970, 25) finds:

“Large negotiable CD’s were particularly hard hit by the interest rate ceiling because they are deposits of financially sophisticated individuals and institutions who have many alternatives. As already noted, they declined from a peak of $24 billion in mid-December, 1968, to less than $12 billion in early October, 1969.”

Banks created different liabilities to compensate for the decline in CDs. As Friedman (1970, 25; 1969) explains:

“The most important single replacement was almost surely ‘liabilities of US banks to foreign branches.’ Prevented from paying a market interest rate on liabilities of home offices in the United States (except to foreign official institutions that are exempt from Regulation Q), the major US banks discovered that they could do so by using the Euro-dollar market. Their European branches could accept time deposits, either on book account or as negotiable CD’s at whatever rate was required to attract them and match them on the asset side of their balance sheet with ‘due from head office.’ The head office could substitute the liability ‘due to foreign branches’ for the liability ‘due on CDs.”

Friedman (1970, 26-7) predicted the future:

“The banks have been forced into costly structural readjustments, the European banking system has been given an unnecessary competitive advantage, and London has been artificially strengthened as a financial center at the expense of New York.”

In short, Depression regulation exported the US financial system to London and offshore centers. What is vividly relevant currently from this experience is the argument by Friedman (1970, 27) that the controls affected the most people with lower incomes and wealth who were forced into accepting controlled-rates on their savings that were lower than those that would be obtained under freer markets. As Friedman (1970, 27) argues:

“These are the people who have the fewest alternative ways to invest their limited assets and are least sophisticated about the alternatives.”

Chart II-14 of the Bureau of Economic Analysis (BEA) provides quarterly savings as percent of disposable income or the US savings rate from 1980 to 2013. There was a long-term downward sloping trend from 12 percent in the early 1980s to 2.0 percent in Jul 2005. The savings rate then rose during the contraction and in the expansion. In 2011 and into 2012 the savings rate declined as consumption is financed with savings in part because of the disincentive or frustration of receiving a few pennies for every $10,000 of deposits in a bank. The savings rate increased in the final segment of Chart II-14 in 2012 followed by another decline because of the pain of the opportunity cost of zero remuneration for hard-earned savings. Swelling realization of income in Oct-Dec 2012 in anticipation of tax increases in Jan 2012 caused the jump of the savings rate to 8.7 percent in Dec 2012. The BEA explains as: Personal income in November and December was boosted by accelerated and special dividend payments to persons and by accelerated bonus payments and other irregular pay in private wages and salaries in anticipation of changes in individual income tax rates. Personal income in December was also boosted by lump-sum social security benefit payments” (page 2 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi1212.pdf). The savings rate then collapsed to 3.6 percent in Jan 2013 in part because of the decline of 5.1 percent in real disposable personal income and to 4.2 percent with increase of real disposable income by 0.9 percent in Feb 2013. The savings rate increased to 4.3 percent in Mar 2013 with increase of real disposable income by 0.4 percent and at 4.5 percent in Apr 2013 with increase of real disposable income by 0.2 percent. The savings rate rose to 4.6 percent in May 2013 with increase of real disposable income by 0.2 percent. The savings rate fell to 4.4 percent in Jun 2013 with decline of real disposable personal income by 0.2 percent. The savings rate remained at 4.4 percent in Jul 2013 with increase of real disposable income by 0.1 percent. The decline of personal income was caused by increasing contributions to government social insurance (page 1 http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0113.pdf http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0213.pdf). The objective of monetary policy is to reduce borrowing rates to induce consumption but it has collateral disincentive of reducing savings and misallocating resources away from their best uses. The zero interest rate of monetary policy is a tax on saving. This tax is highly regressive, meaning that it affects the most people with lower income or wealth and retirees. The long-term decline of savings rates in the US has created a dependence on foreign savings to finance the deficits in the federal budget and the balance of payments.

clip_image018

Chart II-14, US, Personal Savings as a Percentage of Disposable Personal Income, Quarterly, 1980-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart II-15 of the US Bureau of Economic Analysis provides personal savings as percent of personal disposable income, or savings ratio, from Jan 2007 to Jul 2013. The uncertainties caused by the global recession resulted in sharp increase in the savings ratio that peaked at 8.0 percent in May 2008 (http://www.bea.gov/iTable/index_nipa.cfm). The second peak occurred at 8.1 percent in May 2009. There was another rising trend until 5.9 percent in Jun 2010 and then steady downward trend until 4.8 percent in Nov 2011. This was followed by an upward trend with 5.6 percent in Jun 2012 but decline to 4.9 percent in Aug 2012 followed by jump to 8.7 percent in Dec 2012. Swelling realization of income in Oct-Dec 2012 in anticipation of tax increases in Jan 2013 caused the jump of the savings rate to 8.7 percent in Dec 2012. The BEA explains as: Personal income in November and December was boosted by accelerated and special dividend payments to persons and by accelerated bonus payments and other irregular pay in private wages and salaries in anticipation of changes in individual income tax rates. Personal income in December was also boosted by lump-sum social security benefit payments” (page 2 at http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi1212.pdf). There was a reverse effect in Jan 2013 with decline of the savings rate to 3.6 percent. Real disposable personal income fell 5.1 percent and real disposable per capita income fell from $38,170 in Dec 2012 to $36,190 in Jan 2013 or by 5.2 percent, which is explained by the Bureau of Economic Analysis as follows (page 3 http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0213.pdf):

“Contributions for government social insurance -- a subtraction in calculating personal income --increased $6.4 billion in February, compared with an increase of $126.8 billion in January. The

January estimate reflected increases in both employer and employee contributions forgovernment social insurance. The January estimate of employee contributions for government social insurance reflected the expiration of the “payroll tax holiday,” that increased the social security contribution rate for employees and self-employed workers by 2.0 percentage points, or $114.1 billion at an annual rate. For additional information, see FAQ on “How did the expiration of the payroll tax holiday affect personal income for January 2013?” at www.bea.gov. The January estimate of employee contributions for government social insurance also reflected an increase in the monthly premiums paid by participants in the supplementary medical insurance program, in the hospital insurance provisions of the Patient Protection and Affordable Care Act, and in the social security taxable wage base; together, these changes added $12.9 billion to January. Employer contributions were boosted $5.9 billion in January, which reflected increases in the social security taxable wage base (from $110,100 to $113,700), in the tax rates paid by employers to state unemployment insurance, and in employer contributions for the federal unemployment tax and for pension guaranty. The total contribution of special factors to the January change in contributions for government social insurance was $132.9billion.”

The savings rate then collapsed to 3.6 percent in Jan 2013 in part because of the decline of 5.1 percent in real disposable personal income and to 4.2 percent with increase of real disposable income by 0.9 percent in Feb 2013. The savings rate increased to 4.3 percent in Mar 2013 with increase of real disposable income by 0.4 percent and at 4.5 percent in Apr 2013 with increase of real disposable income by 0.2 percent. The savings rate rose to 4.6 percent in May 2013 with increase of real disposable income by 0.2 percent. The savings rate fell to 4.4 percent in Jun 2013 with decline of real disposable personal income by 0.2 percent. The savings rate remained at 4.4 percent in Jul 2013 with increase of real disposable income by 0.1 percent. The decline of personal income was caused by increasing contributions to government social insurance (page 1 http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0113.pdf http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0213.pdf). Permanent manipulation of the entire spectrum of interest rates with monetary policy measures distorts the compass of resource allocation with inferior outcomes of future growth, employment and prosperity and dubious redistribution of income and wealth worsening the most the personal welfare of people without vast capital and financial relations to manage their savings.

clip_image019

Chart II-15, US, Personal Savings as a Percentage of Disposable Income, Monthly 2007-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

ESVII US Long-term Prices and Fear of Deflation. Table IV-6 provides 12-month rates of PCE inflation from Jan 2012 to Jul 2013, annual inflation rates from 2000 to 2012 and average yearly rates of PCE inflation for various periods since 1929. Headline 12-month PCE inflation decreased from 2.5 percent in in the 12 months ending in Jan 2012 to 1.4 percent in the 12 months ending in Junl 2013. PCE inflation excluding food and energy (PCEX), used as indicator in monetary policy, decreased from 2.0 percent in the 12 months ending in Jan 2012 to 1.2 percent in the 12 months ending in Jul 2013, which is still below or at the tolerable maximum of 2.0-2.5 percent in monetary policy. The unintended effect of shocks of commodity prices from zero interest rates captured by PCE food prices (PCEF) and energy (PCEE) in the absence of risk aversion should be weighed in design and implementation of monetary policy. Annual PCE inflation in the second part of Table IV-6 shows significant fluctuations. Headline PCE inflation rose during the period of 1 percent interest rates from Jun 2003 to Jun 2005, reaching 2.9 percent in 2005. PCEE rose at very high two-digit rates after 2003. Headline PCE inflation increased 3.1 percent in 2008 while PCEE energy increased 14.3 percent in carry trades from zero interest rates to commodity derivatives during deep global recession. Flight away from risk financial assets to US government obligations fueled by proposals of TARP in Congress (Cochrane and Zingales 2009) caused decline of PCEE of 19.0 percent in 2009 and minus 0.1 percent in headline PCEE. There is no deflation in the US economy. Headline PCEE inflation increased at the average rate of 2.9 percent from 1929 to 2012, as shown in Table IV-6 using the revisions by the BEA. PCEE inflation was 6.8 percent on average during the Great Inflation episode from 1960 to 1981 (see http://cmpassocregulationblog.blogspot.com/2011/05/slowing-growth-global-inflation-great.html http://cmpassocregulationblog.blogspot.com/2011/04/new-economics-of-rose-garden-turned.html http://cmpassocregulationblog.blogspot.com/2011/03/is-there-second-act-of-us-great.html and Appendix I The Great Inflation; see Taylor 1993, 1997, 1998LB, 1999, 2012FP, 2012Mar27, 2012Mar28, 2012JMCB and http://cmpassocregulationblog.blogspot.com/2012/06/rules-versus-discretionary-authorities.html). PCE inflation was 3.2 percent on average from 1947 to 2012 and 3.2 percent on average for PCEX. The long-term charts of PCEE and PCEX show almost identical behavior.

Table IV-6, US, Percentage Change in 12 Months of Prices of Personal Consumption Expenditures ∆%

 

PCE

PCEG

PCEG
-D

PCES

PCEX

PCEF

PCEE

2013

             

Jul

1.4

0.3

-1.8

2.0

1.2

1.2

4.8

Jun

1.3

0.0

-1.8

2.0

1.2

1.0

3.2

May

1.1

-0.7

-1.9

2.0

1.2

1.0

-0.9

Apr

0.9

-1.1

-1.8

1.9

1.2

1.2

-4.1

Mar

1.2

-0.5

-1.7

2.1

1.4

1.1

-1.6

Feb

1.5

0.4

-1.7

2.1

1.5

1.2

2.4

Jan

1.4

0.0

-1.6

2.1

1.5

1.1

-0.8

2012

             

Dec

1.5

0.4

-1.6

2.1

1.6

1.3

1.1

Nov

1.6

0.5

-1.5

2.1

1.7

1.3

0.8

Oct

1.8

1.3

-1.6

2.1

1.8

1.0

4.4

Sep

1.7

1.0

-1.5

2.0

1.7

0.9

2.7

Aug

1.6

0.6

-1.7

2.1

1.7

1.5

-0.2

Jul

1.5

0.2

-1.6

2.2

1.9

2.0

-4.6

Jun

1.6

0.5

-1.4

2.2

1.9

2.4

-3.3

May

1.6

0.7

-1.1

2.1

1.9

2.4

-3.3

Apr

2.0

1.6

-1.2

2.1

1.9

2.9

1.5

Mar

2.3

2.5

-0.6

2.0

2.0

3.3

4.9

Feb

2.4

2.9

-0.6

2.2

2.0

3.9

7.3

Jan

2.5

3.0

-0.4

2.2

2.0

4.7

6.8

Annual ∆%

             

2012

1.8

1.3

-1.2

2.2

1.8

2.3

1.4

2011

2.4

3.6

-1.0

1.8

1.4

4.0

15.8

2010

1.7

1.6

-1.4

1.7

1.3

0.3

10.1

2009

-0.1

-2.3

-1.7

1.1

1.2

1.2

-19.0

2008

3.1

3.0

-1.9

3.1

2.1

5.6

14.3

2007

2.5

1.1

-2.0

3.2

2.2

3.9

6.0

2006

2.7

1.4

-1.6

3.4

2.2

3.1

11.3

2005

2.9

2.0

-1.0

3.3

2.2

1.7

17.3

2004

2.4

1.4

-1.9

3.0

1.9

3.1

11.3

2003

2.0

-0.1

-3.6

3.1

1.5

1.9

12.6

2002

1.3

-0.9

-2.5

2.6

1.7

1.5

-5.8

2001

1.9

-0.1

-2.0

3.1

1.8

2.9

2.5

2000

2.5

2.0

-1.8

2.8

1.7

2.3

18.3

Average ∆%

             

2000-2012

2.0

1.0

-19.8*

2.6

1.8

2.5

6.0

1929-2012

2.9

3.4

1.4

3.3

2.9

2.9

3.4

1947-2012

3.2

2.4

1.2

3.9

3.2

3.1

4.3

1960-1981

6.8

6.4

4.9

7.2

6.3

7.3

11.1

*Percentage change from 2000 to 2012.

Notes: percentage changes in price index relative to the same month a year earlier of PCE: personal consumption expenditures; PCEG: PCE goods; PCEG-D: PCE durable goods; PCES: PCE services; PCEX: PCE excluding food and energy; PCEF: PCE food; PCEE: PCE energy goods and services

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Table IV-14 provides the annual PCE price index from the revised and enhanced dataset of the Bureau of Economic Analysis (BEA). The annual PCEE index increased at the average rate of 3.2 percent from 1929 to 2012. There is no support for fear of deflation.

clip_image020

Chart IV-14, US, Price Index of Personal Consumption Expenditures, Annual, 1929-2012

Source: US Bureau of Economic Analysis http://www.bea.gov/iTable/index_nipa.cfm

Chart IV-15 of the Bureau of Labor Statistics (BLS) provides the consumer price index from 1914 to 2012. There is long-term inflation and no evidence in support of fear of deflation.

clip_image021

Chart IV-15, US, Consumer Price Index, Annual, 1914-2012

Source: US Bureau of Economic Analysis http://www.bea.gov/iTable/index_nipa.cfm

Chart IV-16 provides the BEA annual index of PCE prices excluding food and energy. The average rate of increase from 1929 to 2012 is 3.2 percent.

clip_image022

Chart IV-16, US, Price Index of Personal Consumption Expenditures Excluding Food and Energy, Annual, 1929-2013

Source: US Bureau of Economic Analysis http://www.bea.gov/iTable/index_nipa.cfm

Chart IV-17 of the Bureau of Labor Statistics (BLS) provides the annual consumer price index excluding food and energy from 1957 to 2012. There is long-term, fluctuating inflation.

clip_image023

Chart IV-17, US, Consumer Price Index Excluding Food and Energy, Annual, 1957-2012

Source: US Bureau of Economic Analysis http://www.bea.gov/iTable/index_nipa.cfm

Unconventional monetary policy of zero interest rates and quantitative easing has been used in Japan and now also in the US. Table IV-7 provides the consumer price index of Japan, with inflation of 0.7 percent in 12 months ending in Jul 2013 and change of 0.2 percent NSA (not-seasonally-adjusted) in Jul 2013. Inflation of consumer prices in the first three months of 2012 annualizes at 0.0 percent NSA. Inflation in Mar-Jul 2013 not seasonally adjusted annualizes at 1.9 percent. There are negative percentage changes in most of the 12-month rates in 2011 with the exception of Jul and Aug both with 0.2 percent and stability in Sep. All 12-month rates of inflation in the first five months of 2013 are negative. Inflation in the 12 months ending in Jun 2013 was 0.2 percent and 0.7 percent in the 12 months ending in Jul 2013. There are ten years of deflation, three of zero inflation and only five of inflation in the annual rate of inflation from 1995 to 2012. This experience is entirely different from that of the US that shows long-term inflation. There is only one annual negative change of the CPI all items of the US in Table IV-5, minus 0.4 percent in 2009 but following 3.8 percent in 2008 because of carry trades from policy rates moving to zero in 2008 during a global contraction that were reversed because of risk aversion in late 2008 and early 2009, causing decreasing commodity prices. Both the US and Japan experienced high rates of inflation during the US Great Inflation of the 1970s (see http://cmpassocregulationblog.blogspot.com/2011/05/slowing-growth-global-inflation-great.html http://cmpassocregulationblog.blogspot.com/2011/04/new-economics-of-rose-garden-turned.html http://cmpassocregulationblog.blogspot.com/2011/03/is-there-second-act-of-us-great.html and Appendix I The Great Inflation; see Taylor 1993, 1997, 1998LB, 1999, 2012FP, 2012Mar27, 2012Mar28, 2012JMCB and http://cmpassocregulationblog.blogspot.com/2012/06/rules-versus-discretionary-authorities.html). It is difficult to justify unconventional monetary policy because of risks of deflation similar to that experienced in Japan. Fear of deflation as had occurred during the Great Depression and in Japan was used as an argument for the first round of unconventional monetary policy with 1 percent interest rates from Jun 2003 to Jun 2004 and quantitative easing in the form of withdrawal of supply of 30-year securities by suspension of the auction of 30-year Treasury bonds with the intention of reducing mortgage rates. For fear of deflation, see Pelaez and Pelaez, International Financial Architecture (2005), 18-28, and Pelaez and Pelaez, The Global Recession Risk (2007), 83-95. The financial crisis and global recession were caused by interest rate and housing subsidies and affordability policies that encouraged high leverage and risks, low liquidity and unsound credit (Pelaez and Pelaez, Financial Regulation after the Global Recession (2009a), 157-66, Regulation of Banks and Finance (2009b), 217-27, International Financial Architecture (2005), 15-18, The Global Recession Risk (2007), 221-5, Globalization and the State Vol. II (2008b), 197-213, Government Intervention in Globalization (2008c), 182-4). Several past comments of this blog elaborate on these arguments, among which: http://cmpassocregulationblog.blogspot.com/2011/07/causes-of-2007-creditdollar-crisis.html http://cmpassocregulationblog.blogspot.com/2011/01/professor-mckinnons-bubble-economy.html http://cmpassocregulationblog.blogspot.com/2011/01/world-inflation-quantitative-easing.html http://cmpassocregulationblog.blogspot.com/2011/01/treasury-yields-valuation-of-risk.html http://cmpassocregulationblog.blogspot.com/2010/11/quantitative-easing-theory-evidence-and.html http://cmpassocregulationblog.blogspot.com/2010/12/is-fed-printing-money-what-are.html 

Table IV-7, Japan, Consumer Price Index, All Items ∆%

 

∆% Month  NSA

∆% 12-Month NSA

Jul 2013

0.2

0.7

Jun

0.0

0.2

May

0.1

-0.3

Apr

0.3

-0.7

Mar

0.2

-0.9

Feb

-0.2

-0.7

Jan

0.0

-0.3

Dec 2012

0.0

-0.1

Nov

-0.4

-0.2

Oct

0.0

-0.4

Sep

0.1

-0.3

Aug

0.1

-0.4

Jul

-0.3

-0.4

Jun

-0.5

-0.2

May

-0.3

0.2

Apr

0.1

0.4

Mar

0.5

0.5

Feb

0.2

0.3

Jan

0.2

0.1

Dec 2011

0.0

-0.2

Nov

-0.6

-0.5

Oct

0.1

-0.2

Sep

0.0

0.0

Aug

0.1

0.2

Jul

0.0

0.2

Jun

-0.2

-0.4 

May

0.0

-0.4 

Apr

0.1

-0.5

Mar

0.3

-0.5

Feb

0.0

-0.5

Jan

-0.1

-0.6

Dec 2010

–0.3

0.0

 

CPI All Items USA

CPI All Items Japan

Annual

   

2012

2.1

0.0

2011

3.2

-0.3

2010

1.6

-0.7

2009

-0.4

-1.4

2008

3.8

1.4

2007

2.8

0.0

2006

3.2

0.3

2005

3.4

-0.3

2004

2.7

0.0

2003

2.3

-0.3

2002

1.6

-0.9

2001

2.8

-0.7

2000

3.4

-0.7

1999

2.2

-0.3

1998

1.6

0.6

1997

2.3

1.8

1996

3.0

0.1

1995

2.8

-0.1

1994

2.6

0.7

1993

3.0

1.3

1992

3.0

1.6

1991

4.2

3.3

1990

5.4

3.1

1989

4.8

2.3

1988

4.1

0.7

1987

3.6

0.1

1986

1.9

0.6

1985

3.6

2.0

1984

4.3

2.3

1983

3.2

1.9

1982

6.2

2.8

1981

10.3

4.9

1980

13.5

7.7

1979

11.3

3.7

1978

7.6

4.2

1977

6.5

8.1

1976

5.8

9.4

1975

9.1

11.7

1974

11.0

23.2

1973

6.2

11.7

1972

3.2

4.9

1971

4.4

6.3

Source: Japan, Statistics Bureau, Ministry of Internal Affairs and Communications

http://www.stat.go.jp/english/data/cpi/index.htm

Japan provides the consumer price index for all items and regions of Japan monthly from 1971 to 2013 with 2010=100, shown in Chart IV-18. There was inflation in Japan during the 1970s and 1980s similar to other countries and regions. The index shows stability after the 1990s with sporadic cases of deflation. Slower growth with sporadic inflation has been characterized as a “lost decade” in Japan (see Pelaez and Pelaez, The Global Recession Risk (2007), 82-115).

clip_image024

clip_image025

Chart IV-18, Japan, Consumer Price Index All Items, All Japan, Index 2010=100, Monthly, 1970-2013

Source: Japan, Statistics Bureau, Ministry of Internal Affairs and Communications

http://www.stat.go.jp/english/data/cpi/index.htm

Chart IV-19 provides the US consumer price index NSA from 1914 to 2013. The dominating characteristic is the increase in slope during the Great Inflation from the middle of the 1960s through the 1970s. There is long-term inflation in the US and no evidence of deflation risks.

clip_image026

Chart IV-19, US, Consumer Price Index, All Items, NSA, 1914-2013

Source: US Bureau of Labor Statistics

http://www.bls.gov/cpi/

Chart IV-20 of the Statistics Bureau of the Ministry of Internal Affairs and Communications of Japan provides 12-month percentage changes of the consumer price index for all items and regions of Japan monthly from 1971 to 2013. Japan experienced the same inflation waves of the United States during the Great Inflation of the 1970s followed by similar low inflation after the inflation-control increase of interest rates in the early 1980s. Numerous cases of negative inflation or deflation are observed after the 1990s.

clip_image027

Chart IV-20, Japan, CPI All Items, All Japan, 12-Month ∆%, 1971-2013

Sources: Japan, Statistics Bureau, Ministry of Internal Affairs and Communications

http://www.stat.go.jp/english/data/cpi/index.htm

Chart IV-21 provides 12-month percentage changes of the US consumer price index from 1914 to 2013. There are actually three waves of inflation in the second half of the 1960s, in the mid 1970s and again in the late 1970s. Table IV-3 provides similar inflation waves in the economy of Japan with 11.8 percent in 1973, 23.1 percent in 1974 and 11.8 percent in 1975. The Great Inflation of the 1970s is analyzed in various comments of this blog (http://cmpassocregulationblog.blogspot.com/2012/06/rules-versus-discretionary-authorities.html http://cmpassocregulationblog.blogspot.com/2011/05/slowing-growth-global-inflation-great.html http://cmpassocregulationblog.blogspot.com/2011/04/new-economics-of-rose-garden-turned.html http://cmpassocregulationblog.blogspot.com/2011/03/is-there-second-act-of-us-great.html and in Appendix I The Great Inflation; see Taylor 1993, 1997, 1998LB, 1999, 2012FP, 2012Mar27, 2012Mar28, 2012JMCB and http://cmpassocregulationblog.blogspot.com/2012/06/rules-versus-discretionary-authorities.html). Inflation rates then stabilized in the US in a range with only two episodes above 5 percent. There are isolated cases of deflation concentrated over extended periods only during the 1930s. There is no case in United States economic history for unconventional monetary policy because of fear of deflation. There are cases of long-term deflation without lost decades or depressions.

Delfim Netto (1958) partly reprinted in Pelaez (1973) conducted two classical nonparametric tests (Mann 1945, Wallis and Moore 1941; see Kendall and Stuart 1968) with coffee-price data in the period of free markets from 1857 to 1906 with the following conclusions (Pelaez, 1976a, 280):

“First, the null hypothesis of no trend was accepted with high confidence; secondly, the null hypothesis of no oscillation was rejected also with high confidence. Consequently, in the nineteenth century international prices of coffee fluctuated but without long-run trend. This statistical fact refutes the extreme argument of structural weakness of the coffee trade.”

The conventional theory that the terms of trade of Brazil deteriorated over the long term is without reality (Pelaez 1976a, 280-281):

“Moreover, physical exports of coffee by Brazil increased at the high average rate of 3.5 per cent per year. Brazil's exchange receipts from coffee-exporting in sterling increased at the average rate of 3.5 per cent per year and receipts in domestic currency at 4.5 per cent per year. Great Britain supplied nearly all the imports of the coffee economy. In the period of the free coffee market, British export prices declined at the rate of 0.5 per cent per year. Thus, the income terms of trade of the coffee economy improved at the relatively satisfactory average rate of 4.0 per cent per year. This is only a lower bound of the rate of improvement of the terms of trade. While the quality of coffee remained relatively constant, the quality of manufactured products improved significantly during the fifty-year period considered. The trade data and the non-parametric tests refute conclusively the long-run hypothesis. The valid historical fact is that the tropical export economy of Brazil experienced an opportunity of absorbing rapidly increasing quantities of manufactures from the "workshop" countries. Therefore, the coffee trade constituted a golden opportunity for modernization in nineteenth-century Brazil.”

Imlah (1958) provides decline of British export prices at 0.5 percent in the nineteenth century and there were no lost decades, depressions or unconventional monetary policies in the highly dynamic economy of England that provided the world’s growth impulse. The experience of the United Kingdom with deflation and economic growth is relevant and rich. Yearly percentage changes of the composite index of prices of the United Kingdom of O’Donoghue and Goulding (2004) provide strong evidence. There are 73 declines of inflation in the 145 years from 1751 to 1896. Prices declined in 50.3 percent of 145 years. Some price declines were quite sharp and many occurred over several years. O’Donoghue and Goulding (2004) also provide inflation data for the UK from 1929 to 1934. Deflation was much sharper in continuous years in earlier periods than during the Great Depression. The United Kingdom could not have led the world in modern economic growth if there were meaningful causality from deflation to depression.

clip_image028

Chart IV-21, US, Consumer Price Index, All Items, NSA, 12-Month Percentage Change 1914-2013

Source: US Bureau of Labor Statistics

http://www.bls.gov/cpi/

Chart IV-22 provides the US consumer price index excluding food and energy from 1957 (when it first becomes available) to 2013. There is long-term inflation in the US without episodes of deflation that would justify symmetric inflation targets to increase inflation from low levels.

clip_image029

Chart IV-22, US, Consumer Price Index Excluding Food and Energy, NSA, 1957-2013

Source: US Bureau of Labor Statistics

http://www.bls.gov/cpi/

Chart IV-23 provides 12-month percentage changes of the consumer price index excluding food and energy from 1958 (when it first becomes available) to 2013. There are three waves of inflation in the 1970s during the Great Inflation. There is no episode of deflation.

clip_image030

Chart IV-23, US, Consumer Price Index Excluding Food and Energy, 12-Month Percentage Change, NSA, 1958-2013

Source: US Bureau of Labor Statistics

http://www.bls.gov/cpi/

IA Mediocre and Decelerating United States Economic Growth. The US is experiencing the first expansion from a recession after World War II without growth, jobs (http://cmpassocregulationblog.blogspot.com/2013/08/risks-of-steepening-yield-curve-and.html) and hiring (http://cmpassocregulationblog.blogspot.com/2013/08/recovery-without-hiring-loss-of-full.html), unsustainable government deficit/debt (http://cmpassocregulationblog.blogspot.com/2013/02/united-states-unsustainable-fiscal.html

http://cmpassocregulationblog.blogspot.com/2012/11/united-states-unsustainable-fiscal.html), waves of inflation (http://cmpassocregulationblog.blogspot.com/2013/08/duration-dumping-and-peaking-valuations.html) and deteriorating terms of trade and net revenue margins in squeeze of economic activity by carry trades induced by zero interest rates

(http://cmpassocregulationblog.blogspot.com/2013/08/duration-dumping-and-peaking-valuations.html) while valuations of risk financial assets approach historical highs. Long-term economic performance in the United States consisted of trend growth of GDP at 3 percent per year and of per capita GDP at 2 percent per year as measured for 1870 to 2010 by Robert E Lucas (2011May). The economy returned to trend growth after adverse events such as wars and recessions. The key characteristic of adversities such as recessions was much higher rates of growth in expansion periods that permitted the economy to recover output, income and employment losses that occurred during the contractions. Over the business cycle, the economy compensated the losses of contractions with higher growth in expansions to maintain trend growth of GDP of 3 percent and of GDP per capita of 2 percent. US economic growth has been at only 2.2 percent on average in the cyclical expansion in the 16 quarters from IIIQ2009 to IIQ2013. Boskin (2010Sep) measures that the US economy grew at 6.2 percent in the first four quarters and 4.5 percent in the first 12 quarters after the trough in the second quarter of 1975; and at 7.7 percent in the first four quarters and 5.8 percent in the first 12 quarters after the trough in the first quarter of 1983 (Professor Michael J. Boskin, Summer of Discontent, Wall Street Journal, Sep 2, 2010 http://professional.wsj.com/article/SB10001424052748703882304575465462926649950.html). There are new calculations using the revision of US GDP and personal income data since 1929 by the Bureau of Economic Analysis (BEA) (http://bea.gov/iTable/index_nipa.cfm http://bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_adv.pdf http://bea.gov/newsreleases/national/pi/2013/pdf/pi0613.pdf) and the second estimate of GDP for IIQ2013 (http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_2nd.pdf). The average of 7.7 percent in the first four quarters of major cyclical expansions is in contrast with the rate of growth in the first four quarters of the expansion from IIIQ2009 to IIQ2010 of only 2.7 percent obtained by diving GDP of $14,738.0 billion in IIQ2010 by GDP of $14,356.9 billion in IIQ2009 {[$14,738.0/$14,356.9 -1]100 = 2.7%], or accumulating the quarter on quarter growth rates (Section I and earlier). The expansion from IQ1983 to IVQ1985 was at the average annual growth rate of 5.7 percent and at 7.8 percent from IQ1983 to IVQ1983 (Section I and earlier http://cmpassocregulationblog.blogspot.com/2013/08/risks-of-steepening-yield-curve-and.html). As a result, there are 28.3 million unemployed or underemployed in the United States for an effective unemployment rate of 17.4 percent (http://cmpassocregulationblog.blogspot.com/2013/08/risks-of-steepening-yield-curve-and.html).

The economy of the US can be summarized in growth of economic activity or GDP as decelerating from mediocre growth of 2.5 percent on an annual basis in 2010 to 1.8 percent in 2011 to 2.8 percent in 2012. The following calculations show that actual growth is around 1.4 to 1.8 percent per year. This rate is well below 3 percent per year in trend from 1870 to 2010, which the economy of the US always attained for entire cycles in expansions after events such as wars and recessions (Lucas 2011May).

Revisions and enhancements of United States GDP and personal income accounts by the Bureau of Economic Analysis (BEA) (http://bea.gov/iTable/index_nipa.cfm http://bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_adv.pdf http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_2nd.pdf http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0713.pdf http://bea.gov/newsreleases/national/pi/2013/pdf/pi0613.pdf) provide important information on long-term growth and cyclical behavior. Table Summary provides relevant data.

  1. Long-term. US GDP grew at the average yearly rate of 3.3 percent from 1929 to 2012 and at 3.2 percent from 1947 to 2012. There were periodic contractions or recessions in this period but the economy grew at faster rates in the subsequent expansions, maintaining long-term economic growth at trend.
  2. Cycles. The combined contraction of GDP in the two almost consecutive recessions in the early 1980s is 4.7 percent. The contraction of US GDP from IVQ2007 to IIQ2009 during the global recession was 4.3 percent. The critical difference in the expansion is growth at average 7.8 percent in annual equivalent in the first four quarters of recovery from IQ1983 to IVQ1983. The average rate of growth of GDP in four cyclical expansions in the postwar period is 7.7 percent. In contrast, the rate of growth in the first four quarters from IIIQ2009 to IIQ2010 was only 2.7 percent. Average annual equivalent growth in the expansion from IQ1983 to IQ1986 was 5.7 percent. In contrast, average annual equivalent growth in the expansion from IIIQ2009 to IIQ2013 was only 2.7 percent. The US appears to have lost its dynamism of income growth and employment creation.

Table Summary, Long-term and Cyclical Growth of GDP, Real Disposable Income and Real Disposable Income per Capita

 

GDP

 

Long-Term

   

1929-2012

3.3

 

1947-2012

3.2

 

Cyclical Contractions ∆%

   

IQ1980 to IIIQ1980, IIIQ1981 to IVQ1982

-4.7

 

IVQ2007 to IIQ2009

-4.3

 

Cyclical Expansions Average Annual Equivalent ∆%

   

IQ1983 to IQ1986

5.7

 

First Four Quarters IQ1983 to IVQ1983

7.8

 

IIIQ2009 to IIQ2013

2.2

 

First Four Quarters IIIQ2009 to IIQ2010

2.7

 
 

Real Disposable Income

Real Disposable Income per Capita

Long-Term

   

1929-2012

3.2

2.0

1947-1999

3.7

2.3

Whole Cycles

   

1980-1989

3.5

2.6

2006-2012

1.4

0.6

Source: Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_2nd.pdf

The revisions and enhancements of United States GDP and personal income accounts by the Bureau of Economic Analysis (BEA) (http://bea.gov/iTable/index_nipa.cfm http://bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_adv.pdf http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_2nd.pdf http://www.bea.gov/newsreleases/national/pi/2013/pdf/pi0713.pdf http://bea.gov/newsreleases/national/pi/2013/pdf/pi0613.pdf) also provide critical information in assessing the current rhythm of US economic growth. The economy appears to be moving at a pace from 1.8 to 1.9 percent per year. Table Summary GDP provides the data.

3. Average Annual Growth in the Past Six Quarters. GDP growth in the four quarters of 2012 and the first two quarters of 2013 accumulated to 2.9 percent. This growth is equivalent to 1.9 percent per year, obtained by dividing GDP in IIQ2013 of $15,681.0 by GDP in IVQ2011 of $15,242.1 and compounding by 4/6: {[($15,681.0/$15,242.1)4/6 -1]100 = 1.9.

4. Average Annual Growth in the First Two Quarters of 2013. GDP growth in the first two quarters of 2013 accumulated to 0.9 percent that is equivalent to 1.8 percent in a year. This is obtained by dividing GDP in IIQ2013 of $15,681.0 by GDP in IVQ2012 of $15,539.6 and compounding by 4/2: {[($15,681.0/$15,539.6)4/2 -1]100 =1.8%}. The US economy grew 1.6 percent in IIQ2013 relative to the same quarter a year earlier in IIQ2012. Another important revelation of the revisions and enhancements is that GDP was flat in IVQ2012, which is just at the borderline of contraction.

Table Summary GDP, US, Real GDP and Percentage Change Relative to IVQ2007 and Prior Quarter, Billions Chained 2005 Dollars and ∆%

 

Real GDP, Billions Chained 2005 Dollars

∆% Relative to IVQ2007

∆% Relative to Prior Quarter

∆%
over
Year Earlier

IVQ2007

14,996.1

NA

NA

1.9

IVQ2011

15,242.1

1.6

1.2

2.0

IQ2012

15,381.6

2.6

0.9

3.3

IIQ2012

15,427.7

2.9

0.3

2.8

IIIQ2012

15,534.0

3.6

0.7

3.1

IVQ2012

15,539.6

3.6

0.0

2.0

IQ2013

15,583.9

3.9

0.3

1.3

IIQ2013

15,681.0

4.6

0.6

1.6

Cumulative ∆% IQ2012 to IIQ2013

2.9

 

2.8

 

Annual Equivalent ∆%

1.9

 

1.9

 

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_2nd.pdf

The objective of this section is analyzing US economic growth in the current cyclical expansion. There is initial discussion of the conventional explanation of the current recovery as being weak because of the depth of the contraction and the financial crisis and brief discussion of the concept of “slow-growth recession.” Analysis that is more complete is in IB Collapse of United States Dynamism of Income Growth and Employment Creation, which is updated with release of more information on the United States economic cycle (IX Conclusion and extended analysis at http://cmpassocregulationblog.blogspot.com/2013/08/interest-rate-risks-duration-dumping.html). The bulk of the section consists of comparison of the current growth experience of the US with earlier expansions after past deep contractions and consideration of recent performance.

This blog has analyzed systematically the weakness of the United States recovery in the current business cycle from IIIQ2009 to the present in comparison with the recovery from the two recessions in the 1980s from IQ1983 to IVQ1985. US economic growth has been at only 2.2 percent on average in the cyclical expansion in the 16 quarters from IIIQ2009 to IIQ2013 (Section I and earlier http://cmpassocregulationblog.blogspot.com/2013/08/interest-rate-risks-duration-dumping.html). Boskin (2010Sep) measures that the US economy grew at 6.2 percent in the first four quarters and 4.5 percent in the first 12 quarters after the trough in the second quarter of 1975; and at 7.7 percent in the first four quarters and 5.8 percent in the first 12 quarters after the trough in the first quarter of 1983 (Professor Michael J. Boskin, Summer of Discontent, Wall Street Journal, Sep 2, 2010 http://professional.wsj.com/article/SB10001424052748703882304575465462926649950.html). (http://cmpassocregulationblog.blogspot.com/2013/06/twenty-eight-million-unemployed-or.html). The average of 7.7 percent in the first four quarters of major cyclical expansions is in contrast with the rate of growth in the first four quarters of the expansion from IIIQ2009 to IIQ2010 of only 2.7 percent obtained by diving GDP of $14,738.0 billion in IIQ2010 by GDP of $14,356.9 billion in IIQ2009 {[$14,738.0/$14,356.9 -1]100 = 2.7%], or accumulating the quarter on quarter growth rates (Section I and earlier http://cmpassocregulationblog.blogspot.com/2013/08/risks-of-steepening-yield-curve-and.html). The expansion from IQ1983 to IVQ1985 was at the average annual growth rate of 5.7 percent and at 7.8 percent from IQ1983 to IVQ1983 (Section I and earlier http://cmpassocregulationblog.blogspot.com/2013/08/risks-of-steepening-yield-curve-and.html). As a result, there are 28.3 million unemployed or underemployed in the United States for an effective unemployment rate of 17.4 percent (http://cmpassocregulationblog.blogspot.com/2013/08/risks-of-steepening-yield-curve-and.html).

The conventional explanation is that the recession from IVQ2007 (Dec) to IIQ2009 (Jun) was so profound that it caused subsequent weak recovery and that historically growth after recessions with financial crises has been weaker. Michael D. Bordo (2012Sep27) and Bordo and Haubrich (2012DR) provide evidence contradicting the conventional explanation: recovery is much stronger on average after profound contractions and much stronger after recessions with financial crises than after recessions without financial crises. Insistence on the conventional explanation prevents finding policies that can accelerate growth, employment and prosperity.

A monumental effort of data gathering, calculation and analysis by Carmen M. Reinhart and Kenneth Rogoff is highly relevant to banking crises, financial crash, debt crises and economic growth (Reinhart 2010CB; Reinhart and Rogoff 2011AF, 2011Jul14, 2011EJ, 2011CEPR, 2010FCDC, 2010GTD, 2009TD, 2009AFC, 2008TDPV; see also Reinhart and Reinhart 2011Feb, 2010AF and Reinhart and Sbrancia 2011). See http://cmpassocregulationblog.blogspot.com/2011/07/debt-and-financial-risk-aversion-and.html The dataset of Reinhart and Rogoff (2010GTD, 1) is quite unique in breadth of countries and over time periods:

“Our results incorporate data on 44 countries spanning about 200 years. Taken together, the data incorporate over 3,700 annual observations covering a wide range of political systems, institutions, exchange rate and monetary arrangements and historic circumstances. We also employ more recent data on external debt, including debt owed by government and by private entities.”

Reinhart and Rogoff (2010GTD, 2011CEPR) classify the dataset of 2317 observations into 20 advanced economies and 24 emerging market economies. In each of the advanced and emerging categories, the data for countries is divided into buckets according to the ratio of gross central government debt to GDP: below 30, 30 to 60, 60 to 90 and higher than 90 (Reinhart and Rogoff 2010GTD, Table 1, 4). Median and average yearly percentage growth rates of GDP are calculated for each of the buckets for advanced economies. There does not appear to be any relation for debt/GDP ratios below 90. The highest growth rates are for debt/GDP ratios below 30: 3.7 percent for the average and 3.9 for the median. Growth is significantly lower for debt/GDP ratios above 90: 1.7 for the average and 1.9 percent for the median. GDP growth rates for the intermediate buckets are in a range around 3 percent: the highest 3.4 percent average is for the bucket 60 to 90 and 3.1 percent median for 30 to 60. There is even sharper contrast for the United States: 4.0 percent growth for debt/GDP ratio below 30; 3.4 percent growth for debt/GDP ratio of 30 to 60; 3.3 percent growth for debt/GDP ratio of 60 to 90; and minus 1.8 percent, contraction, of GDP for debt/GDP ratio above 90.

For the five countries with systemic financial crises—Iceland, Ireland, UK, Spain and the US—real average debt levels have increased by 75 percent between 2007 and 2009 (Reinhart and Rogoff 2010GTD, Figure 1). The cumulative increase in public debt in the three years after systemic banking crisis in a group of episodes after World War II is 86 percent (Reinhart and Rogoff 2011CEPR, Figure 2, 10).

An important concept is “this time is different syndrome,” which “is rooted in the firmly-held belief that financial crises are something that happens to other people in other countries at other times; crises do not happen here and now to us” (Reinhart and Rogoff 2010FCDC, 9). There is both an arrogance and ignorance in “this time is different” syndrome, as explained by Reinhart and Rogoff (2010FCDC, 34):

“The ignorance, of course, stems from the belief that financial crises happen to other people at other time in other places. Outside a small number of experts, few people fully appreciate the universality of financial crises. The arrogance is of those who believe they have figured out how to do things better and smarter so that the boom can long continue without a crisis.”

There is sober warning by Reinhart and Rogoff (2011CEPR, 42) on the basis of the momentous effort of their scholarly data gathering, calculation and analysis:

“Despite considerable deleveraging by the private financial sector, total debt remains near its historic high in 2008. Total public sector debt during the first quarter of 2010 is 117 percent of GDP. It has only been higher during a one-year sting at 119 percent in 1945. Perhaps soaring US debt levels will not prove to be a drag on growth in the decades to come. However, if history is any guide, that is a risky proposition and over-reliance on US exceptionalism may only be one more example of the “This Time is Different” syndrome.”

As both sides of the Atlantic economy maneuver around defaults, the experience on debt and growth deserves significant emphasis in research and policy. The world economy is slowing with high levels of unemployment in advanced economies. Countries do not grow themselves out of unsustainable debts but rather through de facto defaults by means of financial repression and in some cases through inflation. This time is not different.

Professor Michael D. Bordo (2012Sep27), at Rutgers University, is providing clear thought on the correct comparison of the current business cycles in the United States with those in United States history. There are two issues raised by Professor Bordo: (1) incomplete conclusions by lumping together countries with different institutions, economic policies and financial systems; and (2) the erroneous contention that growth is mediocre after financial crises and deep recessions, which is repeated daily in the media, but that Bordo and Haubrich (2012DR) persuasively demonstrate to be inconsistent with United States experience.

Depriving economic history of institutions is perilous as is illustrated by the economic history of Brazil. Douglass C. North (1994) emphasized the key role of institutions in explaining economic history. Rondo E. Cameron (1961, 1967, 1972) applied institutional analysis to banking history. Friedman and Schwartz (1963) analyzed the relation of money, income and prices in the business cycle and related the monetary policy of an important institution, the Federal Reserve System, to the Great Depression. Bordo, Choudhri and Schwartz (1995) analyze the counterfactual of what would have been economic performance if the Fed had used during the Great Depression the Friedman (1960) monetary policy rule of constant growth of money (for analysis of the Great Depression see Pelaez and Pelaez, Regulation of Banks and Finance (2009b), 198-217). Alan Meltzer (2004, 2010a,b) analyzed the Federal Reserve System over its history. The reader would be intrigued by Figure 5 in Reinhart and Rogoff (2010FCDC, 15) in which Brazil is classified in external default for seven years between 1828 and 1834 but not again until 64 years later in 1989, above the 50 years of incidence for serial default. William R. Summerhill, Jr. (2007SC, 2007IR) has filled this void in scholarly research on nineteenth-century Brazil. There are important conclusions by Summerhill on the exceptional sample of institutional change or actually lack of change, public finance and financial repression in Brazil between 1822 and 1899, combining tools of economics, political science and history. During seven continuous decades, Brazil did not miss a single interest payment with government borrowing without repudiation of debt or default. What is surprising is that Brazil borrowed by means of long-term bonds and, even more surprising, interest rates fell over time. The external debt of Brazil in 1870 was ₤41,275,961 and the domestic debt in the internal market was ₤25,708,711, or 62.3 percent of the total (Summerhill 2007IR, 73).

The experience of Brazil differed from that of Latin America (Summerhill 2007IR). During the six decades when Brazil borrowed without difficulty, Latin American countries becoming independent after 1820 engaged in total defaults, suffering hardship in borrowing abroad. The countries that borrowed again fell again in default during the nineteenth century. Venezuela defaulted in four occasions. Mexico defaulted in 1827, rescheduling its debt eight different times and servicing the debt sporadically. About 44 percent of Latin America’s sovereign debt was in default in 1855 and approximately 86 percent of total government loans defaulted in London originated in Spanish American borrowing countries.

External economies of commitment to secure private rights in sovereign credit would encourage development of private financial institutions, as postulated in classic work by North and Weingast (1989), Summerhill 2007IR, 22). This is how banking institutions critical to the Industrial Revolution were developed in England (Cameron 1967). The obstacle in Brazil found by Summerhill (2007IR) is that sovereign debt credibility was combined with financial repression. There was a break in Brazil of the chain of effects from protecting public borrowing, as in North and Weingast (1989), to development of private financial institutions.

Nicia Villela Luz and Carlos Manuel Peláez (1972, 276) find that:

“The lack of interest on historical moments by economists may explain their emphasis on secular trends in their research on the past instead of changes in the historical process. This may be the origin of why they fill gaps in documentation with their extrapolations.”

Vilela Luz (1961) provides classic analysis of industrialization in Brazil. According to Pelaez 1976, 283) following Cameron (1971, 1967):

“The banking law of 1860 placed severe restrictions on two basic modern economic institutions—the corporation and the commercial bank. The growth of the volume of bank credit was one of the most significant factors of financial intermediation and economic growth in the major trading countries of the gold standard group. But Brazil placed strong restrictions on the development of banking and intermediation functions, preventing the channeling of coffee savings into domestic industry at an earlier date.”

Brazil actually abandoned the gold standard during multiple financial crises in the nineteenth century, as it should have to protect domestic economic activity. Pelaez (1975, 447) finds similar experience in the first half of nineteenth-century Brazil:

“Brazil’s experience is particularly interesting in that in the period 1808-1851 there were three types of monetary systems. Between 1808 and 1829, there was only one government-related Bank of Brazil, enjoying a perfect monopoly of banking services. No new banks were established in the 1830s after the liquidation of the Bank of Brazil in 1829. During the coffee boom in the late 1830s and 1840s, a system of banks of issue, patterned after similar institutions in the industrial countries, supplied the financial services required in the first stage of modernization of the export economy.”

Financial crises in the advanced economies were transmitted to nineteenth-century Brazil by the arrival of a ship (Pelaez and Suzigan 1981). The explanation of those crises and the economy of Brazil requires knowledge and roles of institutions, economic policies and the financial system chosen by Brazil, in agreement with Bordo (2012Sep27).

The departing theoretical framework of Bordo and Haubrich (2012DR) is the plucking model of Friedman (1964, 1988). Friedman (1988, 1) recalls, “I was led to the model in the course of investigating the direction of influence between money and income. Did the common cyclical fluctuation in money and income reflect primarily the influence of money on income or of income on money?” Friedman (1964, 1988) finds useful for this purpose to analyze the relation between expansions and contractions. Analyzing the business cycle in the United States between 1870 and 1961, Friedman (1964, 15) found that “a large contraction in output tends to be followed on the average by a large business expansion; a mild contraction, by a mild expansion.” The depth of the contraction opens up more room in the movement toward full employment (Friedman 1964, 17):

“Output is viewed as bumping along the ceiling of maximum feasible output except that every now and then it is plucked down by a cyclical contraction. Given institutional rigidities and prices, the contraction takes in considerable measure the form of a decline in output. Since there is no physical limit to the decline short of zero output, the size of the decline in output can vary widely. When subsequent recovery sets in, it tends to return output to the ceiling; it cannot go beyond, so there is an upper limit to output and the amplitude of the expansion tends to be correlated with the amplitude of the contraction.”

Kim and Nelson (1999) test the asymmetric plucking model of Friedman (1964, 1988) relative to a symmetric model using reference cycles of the NBER, finding evidence supporting the Friedman model. Bordo and Haubrich (2012DR) analyze 27 cycles beginning in 1872, using various measures of financial crises while considering different regulatory and monetary regimes. The revealing conclusion of Bordo and Haubrich (2012DR, 2) is that:

“Our analysis of the data shows that steep expansions tend to follow deep contractions, though this depends heavily on when the recovery is measured. In contrast to much conventional wisdom, the stylized fact that deep contractions breed strong recoveries is particularly true when there is a financial crisis. In fact, on average, it is cycles without a financial crisis that show the weakest relation between contraction depth and recovery strength. For many configurations, the evidence for a robust bounce-back is stronger for cycles with financial crises than those without.”

The average rate of growth of real GDP in expansions after recessions with financial crises was 8 percent but only 6.9 percent on average for recessions without financial crises (Bordo 2012Sep27). Real GDP declined 12 percent in the Panic of 1907 and increased 13 percent in the recovery, consistent with the plucking model of Friedman (Bordo 2012Sep27). The comparison of recovery from IQ1983 to IVQ1985 is appropriate even when considering financial crises. There was significant financial turmoil during the 1980s. Bordo and Haubrich (2012DR, 11) identify a financial crisis in the United States starting in 1981. Benston and Kaufman (1997, 139) find that there was failure of 1150 US commercial and savings banks between 1983 and 1990, or about 8 percent of the industry in 1980, which is nearly twice more than between the establishment of the Federal Deposit Insurance Corporation in 1934 through 1983. More than 900 savings and loans associations, representing 25 percent of the industry, were closed, merged or placed in conservatorships (see Pelaez and Pelaez, Regulation of Banks and Finance (2008b), 74-7). The Financial Institutions Reform, Recovery and Enforcement Act of 1989 (FIRREA) created the Resolution Trust Corporation (RTC) and the Savings Association Insurance Fund (SAIF) that received $150 billion of taxpayer funds to resolve insolvent savings and loans. The GDP of the US in 1989 was $5657.7 billion (http://www.bea.gov/iTable/index_nipa.cfm), such that the partial cost to taxpayers of that bailout was around 2.65 percent of GDP in a year. The US Bureau of Economic Analysis (BEA) estimates GDP in 2012 at $16,244.6 billion (http://www.bea.gov/iTable/index_nipa.cfm), such that the bailout would be equivalent to cost to taxpayers of about $430.5 billion in current GDP terms. A major difference with the Troubled Asset Relief Program (TARP) for private-sector banks is that most of the costs were recovered with interest gains whereas in the case of savings and loans there was no recovery. Money center banks were under extraordinary pressure from the default of sovereign debt by various emerging nations that represented a large share of their net worth (see Pelaez 1986).

Bordo (2012Sep27) finds two probable explanations for the weak recovery during the current economic cycle: (1) collapse of United States housing; and (2) uncertainty originating in fiscal policy, regulation and structural changes. There are serious doubts if monetary policy is adequate to recover the economy under these conditions.

The concept of growth recession was popular during the stagflation from the late 1960s to the early 1980s. The economy of the US underperformed with several recession episodes in “stop and go” fashion of policy and economic activity while the rate of inflation rose to the highest in a peacetime period (see http://cmpassocregulationblog.blogspot.com/2011/06/risk-aversion-and-stagflation.html http://cmpassocregulationblog.blogspot.com/2011/05/slowing-growth-global-inflation-great.html http://cmpassocregulationblog.blogspot.com/2011/05/global-inflation-seigniorage-monetary.html http://cmpassocregulationblog.blogspot.com/2011/04/new-economics-of-rose-garden-turned.html Appendix I; see Taylor 1993, 1997, 1999, 1998LB, 2012Mar27, 2012Mar28, 2012FP, 2012JMCB). A growth recession could be defined as a period in which economic growth is insufficient to move the economy toward full employment of humans, equipment and other productive resources. The US is experiencing a dramatic slow growth recession with 28.315 million people in job stress, consisting of an effective number of unemployed of 17.577 million, 8.324 million employed part-time because they cannot find full employment and 2.414 million marginally attached to the labor force for 17.4 percent of the effective labor force (http://cmpassocregulationblog.blogspot.com/2013/08/risks-of-steepening-yield-curve-and.html). The discussion of the growth recession issue in the 1970s by two recognized economists of the twentieth century, James Tobin and Paul A. Samuelson, is worth recalling.

In analysis of the design of monetary policy in 1974, Tobin (1974, 219) finds that the forecast of the President’s Council of Economic Advisers (CEA) was also the target such that monetary policy would have to be designed and implemented to attain that target. The concern was with maintaining full employment as provided in the Employment Law of 1946 (http://www.law.cornell.edu/uscode/15/1021.html http://uscode.house.gov/download/pls/15C21.txt http://www.eric.ed.gov/PDFS/ED164974.pdf) see http://cmpassocregulationblog.blogspot.com/2011/04/new-economics-of-rose-garden-turned.html), which also created the CEA. Tobin (1974, 219) describes the forecast/target of the CEA for 1974:

“The expected and approved path appears to be quarter-to-quarter rates of growth of real gross national product in 1974 of roughly -0.5, 0.1, and 1 percent, with unemployment rising to about 5.6 percent in the second quarter and remaining there the rest of the year. The rate of price inflation would fall shortly in the second quarter, but rise slightly toward the end of the year.”

Referring to monetary policy design, Tobin (1974, 221) states: “if interest rates remain stable or rise during the current (growth) recession and recovery, this will be a unique episode in business cycle annals.” Subpar economic growth is often called a “growth recession.” The critically important concept is that economic growth is not sufficient to move the economy toward full employment, creating the social and economic adverse outcome of idle capacity and unemployed and underemployed workers, much the same as currently.

Samuelson considers the unexpected incidence of inflation surprises during growth recessions (1974, 76):

“Indeed, if there were in Las Vegas or New York a continuous casino on the money GNP of 1974’s fourth quarter, it would be absurd to think that the best economic forecasters could improve upon the guess posted there. Whatever knowledge and analytical skill they possess would already have been fed into the bidding. It is a manifest contradiction to think that most economists can be expected to do better than their own best performance. I am saying that the best forecasters have been poor in predicting the general price level’s movements and level even a year ahead. By Valentine’s Day 1973 the best forecasters were beginning to talk of the growth recession that we now know did set in at the end of the first quarter. Aside from their end-of-1972 forecasts, the fashionable crowd has little to blame itself for when it comes to their 1973 real GNP projections. But, of course, they did not foresee the upward surge of food and decontrolled industrial prices. This has been a recurring pattern: surprise during the event at the virulence of inflation, wisdom after the event in demonstrating that it did, after all, fit with past patterns of experience.”

Economists are known for their forecasts being second only to those of astrologers. Accurate forecasts are typically realized for the wrong reasons. In contrast with meteorologists, economists do not even agree on what happened. There is not even agreement on what caused the global recession and why the economy has reached a perilous standstill.

Historical parallels are instructive but have all the limitations of empirical research in economics. The more instructive comparisons are not with the Great Depression of the 1930s but rather with the recessions in the 1950s, 1970s and 1980s. The growth rates and job creation in the expansion of the economy away from recession are subpar in the current expansion compared to others in the past. Four recessions are initially considered, following the reference dates of the National Bureau of Economic Research (NBER) (http://www.nber.org/cycles/cyclesmain.html ): IIQ1953-IIQ1954, IIIQ1957-IIQ1958, IIIQ1973-IQ1975 and IQ1980-IIIQ1980. The data for the earlier contractions illustrate that the growth rate and job creation in the current expansion are inferior. The sharp contractions of the 1950s and 1970s are considered in Table I-1, showing the Bureau of Economic Analysis (BEA) quarter-to-quarter, seasonally adjusted (SA), yearly-equivalent growth rates of GDP. The recovery from the recession of 1953 consisted of four consecutive quarters of high percentage growth rates from IIIQ1954 to IIIQ1955: 4.6, 8.0, 11.9 and 6.7. The recession of 1957 was followed by four consecutive high percentage growth rates from IIIQ1958 to IIQ1959: 9.6, 9.7, 7.7 and 10.1. The recession of 1973-1975 was followed by high percentage growth rates from IIQ1975 to IQ1976: 3.1, 6.8, 5.5 and 9.3. The disaster of the Great Inflation and Unemployment of the 1970s, which made stagflation notorious, is even better in growth rates during the expansion phase in comparison with the current slow-growth recession.

Table I-1, US, Seasonally Adjusted Quarterly Percentage Growth Rates in Annual Equivalent of GDP in Cyclical Recessions and Following Four Quarter Expansions ∆%

 

IQ

IIQ

IIIQ

IV

R IIQ1953-IIQ1954

       

1953

   

-2.2

-5.9

1954

-1.9

     

E IIIQ1954-IIQ1955

       

1954

   

4.6

8.0

1955

11.9

6.7

   

R IIIQ1957-IIQ1958

       

1957

     

-4.1

1958

-10.0

     

E IIIQ1958-IIQ1959

       

1958

   

9.6

9.7

1959

7.7

10.1

   

R IVQ1969-IV1970

       

1969

     

-1.7

1970

-0.7

     

E IIQ1970-IQ1971

       

1970

 

0.7

3.6

-4.1

1971

11.2

     

R IVQ1973-IQ1975

       

1973

     

3.8

1974

-3.3

1.0

-3.8

-1.6

1975

-4.7

     

E IIQ1975-IQ1976

       

1975

 

3.1

6.8

5.5

1976

9.3

     

R IQ1980-IIIQ1980

       

1980

1.3

-7.9

-0.6

 

R IQ1981-IVQ1982

       

1981

8.5

-2.9

4.7

-4.6

1982

-6.5

2.2

-1.4

0.4

E IQ1983-IVQ1983

       

1983

5.3

9.4

8.1

8.5

R IVQ2007-IIQ2009

       

2008

-2.7

2.0

-2.0

-8.3

2009

-5.4

-0.4

   

E IIIQ2009-IIQ2010

       

2009

   

1.3

3.9

2010

1.6

3.9

   

Source: Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm Reference Cycles National Bureau of Economic Research http://www.nber.org/cycles/cyclesmain.html

The NBER dates another recession in 1980 that lasted about half a year. If the two recessions from IQ1980s to IIIQ1980 and IIIQ1981 to IVQ1982 are combined, the impact of lost GDP of 4.7 percent is more comparable to the latest revised 4.3 percent drop of the recession from IVQ2007 to IIQ2009. The recession in 1981-1982 is quite similar on its own to the 2007-2009 recession. In contrast, during the Great Depression in the four years of 1930 to 1933, GDP in constant dollars fell 26.3 percent cumulatively and fell 45.3 percent in current dollars (Pelaez and Pelaez, Financial Regulation after the Global Recession (2009a), 150-2, Pelaez and Pelaez, Globalization and the State, Vol. II (2009b), 205-7 and revisions in http://bea.gov/iTable/index_nipa.cfm). Table I-2 provides the Bureau of Economic Analysis (BEA) quarterly growth rates of GDP in SA yearly equivalents for the recessions of 1981 to 1982 and 2007 to 2009, using the latest major revision published on July 31, 2013 (http://bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_adv.pdf) and the second estimate for IIQ2013 (http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_2nd.pdf), which are available in the dataset of the US Bureau of Economic Analysis (http://www.bea.gov/iTable/index_nipa.cfm). There were four quarters of contraction in 1981-1982 ranging in rate from -1.4 percent to -6.5 percent and five quarters of contraction in 2007-2009 ranging in rate from -0.4 percent to -8.3 percent. The striking difference is that in the first sixteen quarters of expansion from IQ1983 to IVQ1986, shown in Table I-2 in relief, GDP grew at the high quarterly percentage growth rates of 5.3, 9.4, 8.1, 8.5, 8.2, 7.2, 4.0, 3.2, 4.0, 3.7, 6.4, 3.0, 3.8, 1.9, 4.1 and 2.1. In contrast, the percentage growth rates in the first sixteen quarters of expansion from IIIQ2009 to IIQ2013 shown in relief in Table I-2 were mediocre: 1.3, 3.9, 1.6, 3.9, 2.8, 2.8, -1.3, 3.2, 1.4, 4.9, 3.7, 1.2, 2.8, 0.1, 1.1 and 2.5. Inventory accumulation contributed 2.73 percentage points to the rate of growth of 4.9 percent in IVQ2011, which is the only relatively high rate from IQ2011 to IIIQ2012, and 0.60 percentage points to the rate of 2.8 percent in IIIQ2012. Economic growth and employment creation decelerated rapidly during 2012 and in 2013 as would be required in movement to full employment.

Table I-2, US, Quarterly Growth Rates of GDP, % Annual Equivalent SA

Q

1981

1982

1983

1984

2008

2009

2010

I

8.5

-6.5

5.3

8.2

-2.7

-5.4

1.6

II

-2.9

2.2

9.4

7.2

2.0

-0.4

3.9

III

4.7

-1.4

8.1

4.0

-2.0

1.3

2.8

IV

-4.6

0.4

8.5

3.2

-8.3

3.9

2.8

       

1985

   

2011

I

     

4.0

   

-1.3

II

     

3.7

   

3.2

III

     

6.4

   

1.4

IV

     

3.0

   

4.9

       

1986

   

2012

I

     

3.8

   

3.7

II

     

1.9

   

1.2

III

     

4.1

   

2.8

IV

     

2.1

   

0.1

       

1987

   

2013

I

     

2.8

   

1.1

II

     

4.6

   

2.5

III

     

3.7

     

IV

     

6.8

     

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Chart I-1 of the Bureau of Economic Analysis (BEA) provides strong growth of real GDP in the US between 1929 and 1999 at the yearly average rate of 3.5 percent. There is an evident acceleration of the rate of GDP growth in the 1990s as shown by a much sharper slope of the growth curve. Cobet and Wilson (2002) define labor productivity as the value of manufacturing output produced per unit of labor input used (see Pelaez and Pelaez, The Global Recession Risk (2007), 137-44). Between 1950 and 2000, labor productivity in the US grew less rapidly than in Germany and Japan. The major part of the increase in productivity in Germany and Japan occurred between 1950 and 1973 while the rate of productivity growth in the US was relatively subdued in several periods. While Germany and Japan reached their highest growth rates of productivity before 1973, the US accelerated its rate of productivity growth in the second half of the 1990s. Between 1950 and 2000, the rate of productivity growth in the US of 2.9 percent per year was much lower than 6.3 percent in Japan and 4.7 percent in Germany. Between 1995 and 2000, the rate of productivity growth of the US of 4.6 percent exceeded that of Japan of 3.9 percent and the rate of Germany of 2.6 percent.

clip_image031

Chart I-1, US, Real GDP 1929-1999

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart I-2 provides the growth of real quarterly GDP in the US between 1947 and 2012. The drop of output in the recession from IVQ2007 to IIQ2009 has been followed by anemic recovery compared with return to trend at 3.0 percent from 1870 to 2010 after events such as wars and recessions (Lucas 2011May) and a standstill that can lead to growth recession, or low rates of economic growth, but perhaps even another contraction or conventional recession. The average rate of growth from 1947 to 2012 is 3.2 percent. The average growth rate from 2000 to 2012 is only 1.7 percent with 2.7 percent annual equivalent from the end of the recession in IVQ2001 to the end of the expansion in IVQ2007.

clip_image032

Chart I-2, US, Real GDP, Quarterly, 1947-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart I-3 provides real GDP percentage change on the quarter a year earlier for 1983-1984. The objective is simply to compare expansion in two recoveries from sharp contractions as shown in Table I-2. Growth rates in the early phase of the recovery in 1983 and 1984 were very high, which is the opportunity to reduce unemployment that has characterized cyclical expansion in the postwar US economy.

clip_image033

Chart I-3, Real GDP Percentage Change on Quarter a Year Earlier 1983-1986

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

In contrast, growth rates in the comparable first sixteen quarters of expansion from 2009 to 2013 in Chart I-4 have been mediocre. As a result, growth has not provided the exit from unemployment and underemployment as in other cyclical expansions in the postwar period. Growth rates did not rise in V shape as in earlier expansions and then declined close to the standstill of growth recessions.

clip_image034

Chart I-4, US, Real GDP Percentage Change on Quarter a Year Earlier 2009-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Table I-3 provides percentage change of real GDP in the United States in the 1930s, 1980s and 2000s. The recession in 1981-1982 is quite similar on its own to the 2007-2009 recession. In contrast, during the Great Depression in the four years of 1930 to 1933, GDP in constant dollars fell 26.3 percent cumulatively and fell 45.3 percent in current dollars (Pelaez and Pelaez, Financial Regulation after the Global Recession (2009a), 150-2, Pelaez and Pelaez, Globalization and the State, Vol. II (2009b), 205-7 and revisions in http://bea.gov/iTable/index_nipa.cfm). Data are available for the 1930s only on a yearly basis. US GDP fell 4.7 percent in the two recessions (1) from IQ1980 to IIIQ1980 and (2) from III1981 to IVQ1981 to IVQ1982 and 4.3 percent cumulatively in the recession from IVQ2007 to IIQ2009. It is instructive to compare the first three years of the expansions in the 1980s and the current expansion. GDP grew at 4.6 percent in 1983, 7.3 percent in 1984 and 4.2 percent in 1985 while GDP grew, 2.5 percent in 2010, 1.8 percent in 2011 and 2.8 percent in 2012. Actual annual equivalent GDP growth in the four quarters of 2012 and first two quarters of 2013 is 1.9 percent and 1.8 percent in the first two quarters of 2013. GDP grew at 4.2 percent in 1985 and 3.5 percent in 1986 while the forecasts of the central tendency of participants of the Federal Open Market Committee (FOMC) are in the range of 2.3 to 2.6 percent in 2013 (http://www.federalreserve.gov/monetarypolicy/files/fomcprojtabl20130619.pdf).

Table I-3, US, Percentage Change of GDP in the 1930s, 1980s and 2000s, ∆%

Year

GDP ∆%

Year

GDP ∆%

Year

GDP ∆%

1930

-8.5

1980

-0.2

2000

4.1

1931

-6.4

1981

2.6

2001

1.0

1932

-12.9

1982

-1.9

2002

1.8

1933

-1.3

1983

4.6

2003

2.8

1934

10.8

1984

7.3

2004

3.8

1935

8.9

1985

4.2

2005

3.4

1936

12.9

1986

3.5

2006

2.7

1937

5.1

1987

3.5

2007

1.8

1938

-3.3

1988

4.2

2008

-0.3

1930

8.0

1989

3.7

2009

-2.8

1940

8.8

1990

1.9

2010

2.5

1941

17.7

1991

-0.1

2011

1.8

1942

18.9

1992

3.6

2012

2.8

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Chart I-5 provides percentage change of GDP in the US during the 1930s. There is vast literature analyzing the Great Depression (Pelaez and Pelaez, Regulation of Banks and Finance (2009), 198-217). Cole and Ohanian (1999) find that US real per capita output was lower by 11 percent in 1939 than in 1929 while the typical expansion of real per capita output in the US during a decade is 31 percent. Private hours worked in the US were 25 percent lower in 1939 relative to 1929.

clip_image035

Chart I-5, US, Percentage Change of GDP in the 1930s

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

In contrast, Chart I-6 shows rapid recovery from the recessions in the 1980s. High growth rates in the initial quarters of expansion eliminated the unemployment and underemployment created during the contraction. The economy then returned to grow at the trend of expansion, interrupted by another contraction in 1991.

clip_image036

Chart I-6, US, Percentage Change of GDP in the 1980s

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart I-7 provides the rates of growth during the 2000s. Growth rates in the initial sixteen quarters of expansion have been relatively lower than during recessions after World War II. As a result, unemployment and underemployment continue at the rate of 17.4 percent of the US labor force (http://cmpassocregulationblog.blogspot.com/2013/08/risks-of-steepening-yield-curve-and.html) with weak hiring (http://cmpassocregulationblog.blogspot.com/2013/08/recovery-without-hiring-loss-of-full.html).

clip_image037

Chart I-7, US, Percentage Change of GDP in the 2000s

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Characteristics of the four cyclical contractions are provided in Table I-4 with the first column showing the number of quarters of contraction; the second column the cumulative percentage contraction; and the final column the average quarterly rate of contraction. There were two contractions from IQ1980 to IIIQ1980 and from IIIQ1981 to IVQ1982 separated by three quarters of expansion. The drop of output combining the declines in these two contractions is 4.7 percent, which is almost equal to the decline of 4.3 percent in the contraction from IVQ2007 to IIQ2009. In contrast, during the Great Depression in the four years of 1930 to 1933, GDP in constant dollars fell 26.3 percent cumulatively and fell 45.3 percent in current dollars (Pelaez and Pelaez, Financial Regulation after the Global Recession (2009a), 150-2, Pelaez and Pelaez, Globalization and the State, Vol. II (2009b), 205-7 and revisions in http://bea.gov/iTable/index_nipa.cfm). The comparison of the global recession after 2007 with the Great Depression is entirely misleading.

Table I-4, US, Number of Quarters, GDP Cumulative Percentage Contraction and Average Percentage Annual Equivalent Rate in Cyclical Contractions   

 

Number of Quarters

Cumulative Percentage Contraction

Average Percentage Rate

IIQ1953 to IIQ1954

3

-2.4

-0.8

IIIQ1957 to IIQ1958

3

-3.0

-1.0

IVQ1973 to IQ1975

5

-3.1

-0.6

IQ1980 to IIIQ1980

2

-2.2

-1.1

IIIQ1981 to IVQ1982

4

-2.5

-0.64

IVQ2007 to IIQ2009

6

-4.3

-0.72

Sources: Source: Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm Reference Cycles National Bureau of Economic Research http://www.nber.org/cycles/cyclesmain.html

Table I-5 shows the extraordinary contrast between the mediocre average annual equivalent growth rate of 2.2 percent of the US economy in the sixteen quarters of the current cyclical expansion from IIIQ2009 to IIQ2013 and the average of 5.7 percent in the first thirteen quarters of expansion from IQ1983 to IQ1986, 5.3 percent in the first fifteen quarters of expansion from IQ1983 to IIIQ1986 and 5.2 percent in the first sixteen quarters of expansion from IQ1983 to IVQ1986. The line “average first four quarters in four expansions” provides the average growth rate of 7.7 percent with 7.8 percent from IIIQ1954 to IIQ1955, 9.2 percent from IIIQ1958 to IIQ1959, 6.1 percent from IIIQ1975 to IIQ1976 and 7.8 percent from IQ1983 to IVQ1983. The United States missed this opportunity of high growth in the initial phase of recovery. Boskin (2010Sep) measures that the US economy grew at 6.2 percent in the first four quarters and 4.5 percent in the first 12 quarters after the trough in the second quarter of 1975; and at 7.7 percent in the first four quarters and 5.8 percent in the first 12 quarters after the trough in the first quarter of 1983 (Professor Michael J. Boskin, Summer of Discontent, Wall Street Journal, Sep 2, 2010 http://professional.wsj.com/article/SB10001424052748703882304575465462926649950.html). Table I-5 provides an average of 7.7 percent in the first four quarters of major cyclical expansions while the rate of growth in the first four quarters of the expansion from IIIQ2009 to IIQ2010 is only 2.7 percent obtained by diving GDP of $14,738.0 billion in IIQ2010 by GDP of $14,356.9 billion in IIQ2009 {[$14,738.0/$14,356.9 -1]100 = 2.7%], or accumulating the quarter on quarter growth rates. As a result, there are 28.3 million unemployed or underemployed in the United States for an effective unemployment rate of 17.4 percent (http://cmpassocregulationblog.blogspot.com/2013/08/risks-of-steepening-yield-curve-and.html). BEA data show the US economy in standstill with annual growth of 2.4 percent in 2010 decelerating to 1.8 percent annual growth in 2011 and 2.8 percent in 2012 (http://www.bea.gov/iTable/index_nipa.cfm) The expansion from IQ1983 to IVQ1985 was at the average annual growth rate of 5.7 percent and at 7.8 percent from IQ1983 to IVQ1983. GDP growth in the first two quarters of 2013 accumulated to 0.9 percent that is equivalent to 1.8 percent in a year. This is obtained by dividing GDP in IIQ2013 of $15681.0 by GDP in IVQ2012 of $15,539.6 and compounding by 4/2: {[($15,681.0/$15,539.6)4/2 -1]100 =1.8%}. The US economy grew 1.6 percent in IIQ2013 relative to the same quarter a year earlier in IIQ2012. Another important revelation of the revisions and enhancements is that GDP was flat in IVQ2012, just at the borderline of contraction.

Table I-5, US, Number of Quarters, Cumulative Growth and Average Annual Equivalent Growth Rate in Cyclical Expansions

 

Number
of
Quarters

Cumulative Growth

∆%

Average Annual Equivalent Growth Rate

IIIQ 1954 to IQ1957

11

12.8

4.5

First Four Quarters IIIQ1954 to IIQ1955

4

7.8

 

IIQ1958 to IIQ1959

5

10.0

7.9

First Four Quarters

IIIQ1958 to IIQ1959

4

9.2

 

IIQ1975 to IVQ1976

8

8.3

4.1

First Four Quarters IIIQ1975 to IIQ1976

4

6.1

 

IQ1983 to IQ1986

IQ1983 to IIIQ1986

IQ1983 to IVQ1986

13

15

16

19.9

21.6

22.3

5.7

5.4

5.2

First Four Quarters IQ1983 to IVQ1983

4

7.8

 

Average First Four Quarters in Four Expansions*

 

7.7

 

IIIQ2009 to IIQ2013

16

9.2

2.2

First Four Quarters IIIQ2009 to IIQ2010

 

2.7

 

*First Four Quarters: 7.8% IIIQ1954-IIQ1955; 9.2% IIIQ1958-IIQ1959; 6.1% IIIQ1975-IIQ1976; 7.8% IQ1983-IVQ1983

Source: Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm Reference Cycles National Bureau of Economic Research http://www.nber.org/cycles/cyclesmain.html

Chart I-8 shows US real quarterly GDP growth from 1980 to 1989. The economy contracted during the recession and then expanded vigorously throughout the 1980s, rapidly eliminating the unemployment caused by the contraction.

clip_image038

Chart I-8, US, Real GDP, 1980-1989

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart I-9 shows the entirely different situation of real quarterly GDP in the US between 2007 and 2012. The economy has underperformed during the first sixteen quarters of expansion for the first time in the comparable contractions since the 1950s. The US economy is now in a perilous standstill.

clip_image039

Chart I-9, US, Real GDP, 2007-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

As shown in Tables I-4 and I-5 above the loss of real GDP in the US during the contraction was 4.3 percent but the gain in the cyclical expansion has been only 9.2 percent (first to the last row in Table I-5), using all latest revisions. As a result, the level of real GDP in IIQ2013 with the second estimate and revisions is only higher by 4.6 percent than the level of real GDP in IVQ2007. Growth at trend of 3.0 percent in the entire cycle as in past cyclical expansions would result in GDP higher by 12.6 percent in IIQ2013 relative to IVQ2007. Trend GDP would be $16,878.2 billion, which is higher than actual GDP in IIQ2013 of $15,681.0 billion, for underperformance of $1,197.2 billion. Table I-6 provides in the second column real GDP in billions of chained 2005 dollars. The third column provides the percentage change of the quarter relative to IVQ2007; the fourth column provides the percentage change relative to the prior quarter; and the final fifth column provides the percentage change relative to the same quarter a year earlier. The contraction actually concentrated in two quarters: decline of 2.2 percent in IVQ2008 relative to the prior quarter and decline of 1.4 percent in IQ2009 relative to IVQ2008. The combined fall of GDP in IVQ2008 and IQ2009 was 3.6 percent {[(1-0.022) x (1-0.014) -1]100 = -3.6%}, or {[(IQ2009 $14,372.1)/(IIIQ2008 $14,895.1) – 1]100 = -3.5%} except for rounding. Those two quarters coincided with the worst effects of the financial crisis. GDP fell 0.1 percent in IIQ2009 but grew 0.3 percent in IIIQ2009, which is the beginning of recovery in the cyclical dates of the NBER. Most of the recovery occurred in five successive quarters from IVQ2009 to IVQ2010 of growth of 1.0 percent in IVQ2009, 0.4 percent in IQ2010, 0.9 percent in IIQ2010 and equal growth at 0.7 percent in IIIQ2010 and 0.7 percent in IVQ2010 for cumulative growth in those five quarters of 3.8 percent, obtained by accumulating the quarterly rates {[(1.01 x 1.004 x 1.009 x 1.007 x 1.007) – 1]100 = 3.7%} or {[(IVQ2010 $14,942.4)/(IIIQ2009 $14,402.5) – 1]100 = 3.7%} with minor rounding difference. The economy then stalled during the first half of 2011 with decline of 0.3 percent in IQ2011 and growth of 0.8 percent in IIQ2011 for combined annual equivalent rate of 1.0 percent {(0.997 x 1.008)2}. The economy grew 0.3 percent in IIIQ2011 for annual equivalent growth of 1.2 percent in the first three quarters {[(0.997 x 1.008 x 1.003)4/3 -1]100 = 1.1%}. Growth picked up in IVQ2011 with 1.2 percent relative to IIIQ2011. Growth in a quarter relative to a year earlier in Table I-6 slows from over 2.7 percent during three consecutive quarters from IIQ2010 to IVQ2010 to 2.0 percent in IQ2011, 1.9 percent in IIQ2011, 1.5 percent in IIIQ2011 and 2.0 percent in IVQ2011. As shown below, growth of 1.0 percent in IVQ2011 was partly driven by inventory accumulation. In IQ2012, GDP grew 0.9 percent relative to IVQ2011 and 3.3 percent relative to IQ2011, decelerating to 0.3 percent in IIQ2012 and 2.8 percent relative to IIQ2011 and 0.7 percent in IIIQ2012 and 3.1 percent relative to IIIQ2011 largely because of inventory accumulation and national defense expenditures. Growth was 0.0 percent in IVQ2012 with 2.0 percent relative to a year earlier but mostly because of deduction of 2.00 percentage points of inventory divestment and 1.22 percentage points of reduction of one-time national defense expenditures. Growth was 0.3 percent in IQ2013 and 1.3 percent relative to IQ2012 in large part because of burning savings to consume caused by financial repression of zero interest rates. There is similar growth of 0.4 percent in IIQ2013 and 1.6 percent relative to a year earlier. Rates of a quarter relative to the prior quarter capture better deceleration of the economy than rates on a quarter relative to the same quarter a year earlier. The critical question for which there is not yet definitive solution is whether what lies ahead is continuing growth recession with the economy crawling and unemployment/underemployment at extremely high levels or another contraction or conventional recession. Forecasts of various sources continued to maintain high growth in 2011 without taking into consideration the continuous slowing of the economy in late 2010 and the first half of 2011. The sovereign debt crisis in the euro area is one of the common sources of doubts on the rate and direction of economic growth in the US but there is weak internal demand in the US with almost no investment and spikes of consumption driven by burning saving because of financial repression forever in the form of zero interest rates.

Table I-6, US, Real GDP and Percentage Change Relative to IVQ2007 and Prior Quarter, Billions Chained 2005 Dollars and ∆%

 

Real GDP, Billions Chained 2005 Dollars

∆% Relative to IVQ2007

∆% Relative to Prior Quarter

∆%
over
Year Earlier

IVQ2007

14,996.1

NA

NA

1.9

IQ2008

14,895.4

-0.7

-0.7

1.1

IIQ2008

14,969.2

-0.2

0.5

0.9

IIIQ2008

14,895.1

-0.7

-0.5

-0.3

IVQ2008

14,574.6

-2.8

-2.2

-2.8

IQ2009

14,372.1

-4.2

-1.4

-3.5

IIQ2009

14,356.9

-4.3

-0.1

-4.1

IIIQ2009

14,402.5

-4.0

0.3

-3.3

IV2009

14,540.2

-3.0

1.0

-0.2

IQ2010

14,597.7

-2.7

0.4

1.6

IIQ2010

14,738.0

-1.7

0.9

2.7

IIIQ2010

14,839.3

-1.0

0.7

3.0

IVQ2010

14,942.4

-0.4

0.7

2.8

IQ2011

14,894.0

-0.7

-0.3

2.0

IIQ2011

15,011.3

0.1

0.8

1.9

IIIQ2011

15,062.1

0.4

0.3

1.5

IV2011

15,242.1

1.6

1.2

2.0

IQ2012

15,381.6

2.6

0.9

3.3

IIQ2012

15,427.7

2.9

0.3

2.8

IIIQ2012

15,534.0

3.6

0.7

3.1

IVQ2012

15,539.6

3.6

0.0

2.0

IQ2013

15,583.9

3.9

0.3

1.3

IIQ2013

15,681.0

4.6

0.6

1.6

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Chart I-10 provides the percentage change of real GDP from the same quarter a year earlier from 1980 to 1989. There were two contractions almost in succession in 1980 and from 1981 to 1983. The expansion was marked by initial high rates of growth as in other recession in the postwar US period during which employment lost in the contraction was recovered. Growth rates continued to be high after the initial phase of expansion.

clip_image040

Chart I-10, Percentage Change of Real Gross Domestic Product from Quarter a Year Earlier 1980-1989

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

The experience of recovery after 2009 is not as complete as during the 1980s. Chart I-11 shows the much lower rates of growth in the early phase of the current expansion and sharp decline from an early peak. The US missed the initial high growth rates in cyclical expansions that eliminate unemployment and underemployment.

clip_image041

Chart I-11, Percentage Change of Real Gross Domestic Product from Quarter a Year Earlier 2007-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart I-12 provides growth rates from a quarter relative to the prior quarter during the 1980s. There is the same strong initial growth followed by a long period of sustained growth.

clip_image042

Chart I-12, Percentage Change of Real Gross Domestic Product from Prior Quarter 1980-1989

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart I-13 provides growth rates in a quarter relative to the prior quarter from 2007 to 2013. Growth in the current expansion after IIIQ2009 has not been as strong as in other postwar cyclical expansions.

clip_image043

Chart I-13, Percentage Change of Real Gross Domestic Product from Prior Quarter 2007-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

The revised estimates and earlier estimates from IQ2008 to IQ2012 in seasonally adjusted annual equivalent rates are shown in Table I-7. The strongest revision is for IVQ2008 for which the contraction of GDP is revised from minus 6.8 percent to minus 8.9 percent and minus 8.3 percent. IQ2009 is also revised from contraction of minus 4.9 percent to minus 6.7 percent but then lowered to contraction of 5.3 percent and 5.4 percent. There is only minor revision in IIIQ2008 of the contraction of minus 4.0 percent to minus 3.7 percent and minus 2.0 percent. Growth of 5.0 percent in IV2009 is revised to 3.8 percent and then increased to 4.0 percent but lowered to 3.9 percent. Growth in IQ2010 is lowered from 3.9 percent to 2.3 percent and 1.6 percent. Growth in IIQ2010 is upwardly revised to 3.8 percent but then lowered to 2.2 percent. The final revision increased growth in IIQ2010 to 3.9 percent. Revisions lowered growth of 1.9 percent in IQ2011 to minus 1.3 percent. The revisions lowered growth of 1.8 percent in IQ2013 to 1.1 percent but increased growth of 2.0 percent in IQ2012 to 3.7 percent. The revisions do not alter the conclusion that the current expansion is much weaker than historical sharp contractions since the 1950s and is now changing into slow growth recession with higher risks of contraction and continuing underperformance.

Table I-7, US, Quarterly Growth Rates of GDP, % Annual Equivalent SA, Revised and Earlier Estimates

Quarters

Revised Estimate Jul 31, 2013

Revised Estimate

Jul 27, 2012

Revised Estimate

Jul 29, 2011

Earlier Estimate

2008

       

I

-2.7

 

-1.8

-0.7

II

2.0

 

1.3

0.6

III

-2.0

 

-3.7

-4.0

IV

-8.3

 

-8.9

-6.8

2009

       

I

-5.4

-5.3

-6.7

-4.9

II

-0.4

-0.3

-0.7

-0.7

III

1.3

1.4

1.7

1.6

IV

3.9

4.0

3.8

5.0

2010

       

I

1.6

2.3

3.9

3.7

II

3.9

2.2

3.8

1.7

III

2.8

2.6

2.5

2.6

IV

2.8

2.4

2.3

3.1

2011

       

I

-1.3

0.1

0.4

1.9

II

3.2

2.5

   

III

1.4

1.3

   

IV

4.9

4.1

   

2012

       

I

3.7

2.0

   

II

1.2

1.3

   

III

2.8

3.1

   

IV

0.1

0.4

   

2013

       

I

1.1

1.8

   

II

2.5

     

Source: US Bureau of Economic Analysis http://www.bea.gov/iTable/index_nipa.cfm

Aggregate demand, personal consumption expenditures (PCE) and gross private domestic investment (GDI) were much stronger during the expansion phase in IQ1983 to IVQ1986 than in IIIQ2009 to IIQ2013, as shown in Table I-8. GDI provided the impulse of growth in 1983 and 1984, which has not been the case from 2009 to 2013. The investment decision in the US economy has been frustrated in the current cyclical expansion. Growth of GDP in IIQ2013 at seasonally-adjusted annual rate of 2.5 percent consisted of positive contribution of 1.21 percentage points of personal consumption expenditures (PCE) plus positive contribution of 1.48 percentage points of gross private domestic investment (GDI) of which 0.59 percentage points of inventory investment (∆PI), neutral net exports (trade or exports less imports) of 0.00 percentage points and negative 0.18 percentage points of government consumption expenditures and gross investment (GOV) partly because of one-time reduction of national defense expenditures of 0.03 percentage points. The economy of the United States has lost the dynamic growth impulse of earlier cyclical expansions with mediocre growth resulting from consumption forced by one-time effects of financial repression, national defense expenditures and inventory accumulation.

Table I-8, US, Contributions to the Rate of Growth of GDP in Percentage Points

 

GDP

PCE

GDI

∆ PI

Trade

GOV

2013

           

I

1.1

1.54

0.71

0.93

-0.28

-0.82

II

2.5

1.21

1.48

0.59

0.00

-0.18

2012

           

I

3.7

1.98

1.57

0.36

0.44

-0.28

II

1.2

1.28

-0.23

-0.91

0.10

0.05

III

2.8

1.15

0.99

0.60

-0.03

0.67

IV

0.1

1.13

-0.36

-2.00

0.68

-1.31

2011

           

I

-1.3

1.42

-1.11

-1.06

0.01

-1.61

II

3.2

1.03

1.88

0.72

0.53

-0.25

III

1.4

1.42

0.36

-1.60

0.10

-0.52

IV

4.9

1.65

4.13

2.73

-0.60

-0.31

2010

           

I

1.6

1.42

1.77

1.66

-0.96

-0.63

II

3.9

2.21

2.86

1.09

-1.77

0.61

III

2.8

1.87

1.86

1.90

-0.88

-0.07

IV

2.8

2.86

-0.51

-1.64

1.32

-0.87

2009

           

I

-5.4

-0.83

-7.02

-2.26

2.25

0.15

II

-0.4

-1.13

-3.25

-1.12

2.40

1.56

III

1.3

1.73

-0.40

-0.38

-0.53

0.48

IV

3.9

0.05

4.05

4.40

-0.05

-0.17

1982

           

I

-6.5

1.61

-7.60

-5.34

-0.49

-0.05

II

2.2

0.89

-0.06

2.26

0.81

0.56

III

-1.4

1.88

-0.62

1.11

-3.22

0.53

IV

0.4

4.51

-5.37

-5.33

-0.10

1.35

1983

           

I

5.3

2.45

2.36

0.92

-0.29

0.82

II

9.4

5.06

5.96

3.43

-2.46

0.89

III

8.1

4.50

4.40

0.57

-2.25

1.42

IV

8.5

4.06

6.94

3.01

-1.13

-1.36

1984

           

I

8.2

2.26

7.23

4.94

-2.31

1.01

II

7.2

3.64

2.57

-0.29

-0.87

1.87

III

4.0

1.95

1.69

0.21

-0.35

0.70

IV

3.2

3.29

-1.08

-2.44

-0.56

1.58

1985

           

I

4.0

4.23

-2.14

-2.86

0.94

1.01

II

3.7

2.35

1.34

0.35

-1.90

1.93

III

6.4

4.82

-0.43

-0.15

-0.01

1.98

IV

3.0

0.62

2.80

1.40

-0.66

0.27

1986

           

I

3.8

2.10

0.04

-0.17

0.92

0.70

II

1.9

2.77

-1.30

-1.30

-1.33

1.70

III

4.1

4.55

-1.97

-1.62

-0.45

1.95

IV

2.1

1.62

0.24

-0.29

0.71

-0.48

Note: PCE: personal consumption expenditures; GDI: gross private domestic investment; ∆ PI: change in private inventories; Trade: net exports of goods and services; GOV: government consumption expenditures and gross investment; – is negative and no sign positive

GDP: percent change at annual rate; percentage points at annual rates

Source: US Bureau of Economic Analysis

Source: Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

The Bureau of Economic Analysis (BEA) (pages 1-2 http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_2nd.pdf) explains growth of GDP in IIQ2013 as follows:

“The increase in real GDP in the second quarter primarily reflected positive contributions from personal consumption expenditures (PCE), exports, private inventory investment, nonresidential fixed investment, and residential fixed investment that were partly offset by a negative contribution from federal government spending. Imports, which are a subtraction in the calculation of GDP, increased.

The acceleration in real GDP in the second quarter primarily reflected upturns in exports and in nonresidential fixed investment and a smaller decrease in federal government spending that were partly offset by an acceleration in imports and decelerations in private inventory investment and in PCE.”

There are positive contributions to growth in IIQ2013 shown in Table I-9:

  • Personal consumption expenditures (PCE) growing at 2.5 percent with consumption of durable goods growing at 6.1 percent
  • Residential fixed investment (RFI) growing at 12.9 percent
  • Nonresidential fixed investment growing at 4.4 percent
  • Private inventory investment contributing 0.59 percentage points
  • Growth of exports at 8.6 percent, which is higher than imports at 7.0 percent

There were negative contributions in IIQ2013:

  • Federal government expenditures declining at 1.6 percent partly because of decrease of national defense expenditures at 0.6 percent that deducted 0.03 percentage points from GDP growth
  • Growth of imports, which are deduction to growth, at 7.0 percent

The BEA explains acceleration in real GDP growth in IIQ2013 by:

  • Growth of nonresidential fixed investment at 4.4 percent in IIQ2013 compared with decline at 4.6 percent in IQ2013
  • Growth of exports at 8.6 percent in IIQ2013 compared with decline at 1.3 percent in IQ2013

An important aspect of growth in the US is the decline in growth of real disposable personal income, or what is left after taxes and inflation, which increased at the rate of 0.7 percent in IIQ2013 compared with a year earlier. The effects of financial repression, or zero interest, are vividly shown in the decline of the savings rate, or personal saving as percent of disposable income from 5.5 percent in IIQ2012 to 4.5 percent in IIQ2013. Anticipation of income in IVQ2012 to avoid higher taxes in 2013 caused increases in income and savings while higher payroll taxes in 2013 restricted income growth and savings in IQ2013. Zero interest rates induce risky investments with high leverage and can contract balance sheets of families, business and financial institutions when interest rates inevitably increase in the future. There is a tradeoff of weaker economy in the future when interest rates increase by meager growth in the present with forced consumption by zero interest rates.

Table I-9, US, Percentage Seasonally Adjusted Annual Equivalent Quarterly Rates of Increase, %

 

IIQ 2012

IIIQ    

2012

IVQ 

2012

IIQ 

2013

IIQ 2013

GDP

1.2

2.8

0.1

1.1

2.5

PCE

1.9

1.7

1.7

2.3

1.8

Durable Goods

2.9

8.3

10.5

5.8

6.1

NRFI

4.5

0.3

9.8

-4.6

4.4

RFI

5.7

14.1

19.8

12.5

12.9

Exports

3.8

0.4

1.1

-1.3

8.6

Imports

2.5

0.5

-3.1

0.6

7.0

GOV

0.3

3.5

-6.5

-4.2

-0.9

Federal GOV

-0.2

8.9

-13.9

-8.4

-1.6

National Defense

-1.0

12.5

-21.6

-11.2

-0.6

Cont to GDP Growth % Points

-0.05

0.60

-1.22

-0.57

-0.03

State/Local GOV

0.6

-0.2

-1.0

-1.3

-0.5

∆ PI (PP)

-0.91

0.60

-2.00

0.93

0.59

Final Sales of Domestic Product

2.2

2.2

2.2

0.2

1.9

Gross Domestic Purchases

1.1

2.7

-0.5

1.4

2.4

Prices Gross
Domestic Purchases

1.0

1.4

1.6

1.2

0.3

Prices of GDP

1.8

2.3

1.1

1.3

0.8

Prices of GDP Excluding Food and Energy

1.5

1.3

1.4

1.6

1.1

Prices of PCE

1.1

1.7

1.6

1.1

0.0

Prices of PCE Excluding Food and Energy

1.8

1.4

1.3

1.4

0.8

Prices of Market Based PCE

0.9

1.6

1.4

1.3

-0.3

Prices of Market Based PCE Excluding Food and Energy

1.7

1.3

0.9

1.6

0.6

Real Disposable Personal Income*

1.8

1.3

3.6

0.4

0.7

Personal Savings As % Disposable Income

5.5

4.9

6.6

4.1

4.5

Note: PCE: personal consumption expenditures; NRFI: nonresidential fixed investment; RFI: residential fixed investment; GOV: government consumption expenditures and gross investment; ∆ PI: change in

private inventories; GDP - ∆ PI: final sales of domestic product; PP: percentage points; Personal savings rate: savings as percent of disposable income

*Percent change from quarter one year ago

Source: Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Percentage shares of GDP are shown in Table I-10. PCE is equivalent to 68.6 percent of GDP and is under pressure with stagnant real disposable income, high levels of unemployment and underemployment and higher savings rates than before the global recession, temporarily interrupted by financial repression in the form of zero interest rates. Gross private domestic investment is also growing slowly even with about two trillion dollars in cash holdings by companies. In a slowing world economy, it may prove more difficult to grow exports faster than imports to generate higher growth. Bouts of risk aversion revalue the dollar relative to most currencies in the world as investors increase their holdings of dollar-denominated assets.

Table I-10, US, Percentage Shares of GDP, %

 

IIQ2013

GDP

100.0

PCE

68.6

   Goods

23.1

            Durable

7.5

            Nondurable

15.6

   Services

45.5

Gross Private Domestic Investment

15.8

    Fixed Investment

15.2

        NRFI

12.2

            Structures

2.7

            Equipment & Software

5.6

            Intellectual Property

3.9

        RFI

3.1

     Change in Private
      Inventories

0.5

Net Exports of Goods and Services

-3.0

       Exports

13.5

                    Goods

9.3

                    Services

4.1

       Imports

16.5

                     Goods

13.7

                     Services

2.8

Government

18.7

        Federal

7.5

           National Defense

4.7

           Nondefense

2.9

        State and Local

11.2

PCE: personal consumption expenditures; NRFI: nonresidential fixed investment; RFI: residential fixed investment

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Table I-11 shows percentage point (PP) contributions to the annual levels of GDP growth in the earlier recessions 1958-1959, 1975-1976, 1982-1983 and 2009, 2010, 2011 and 2012. The data incorporate the new revisions released by the BEA on Jul 31, 2013. The most striking contrast is in the rates of growth of annual GDP in the expansion phases of 6.9 percent in 1959, 5.4 percent in 1976, and 4.6 percent in 1983 followed by 7.3 percent in 1984 and 4.2 percent in 1985. In contrast, GDP grew 2.5 percent in 2010 after six consecutive quarters of growth, 1.8 percent in 2011 after ten consecutive quarters of expansion and 2.8 percent in 2012 after 14 quarters of expansion. Annual levels also show much stronger growth of PCEs in the expansions after the earlier contractions than in the expansion after the global recession of 2007. Gross domestic investment was much stronger in the earlier expansions than in 2010, 2011 and 2012.

Table I-11, US, Percentage Point Contributions to the Annual Growth Rate of GDP

 

GDP

PCE

GDI

∆ PI

Trade

GOV

1958

-0.7

0.52

-1.16

-0.17

-0.87

0.77

1959

6.9

3.49

2.82

0.83

0.00

0.59

1975

-0.2

1.36

-2.90

-1.23

0.86

0.49

1976

5.4

3.41

2.91

1.37

-1.05

0.12

1982

-1.9

0.86

-2.55

-1.30

-0.59

0.38

1983

4.6

3.54

1.60

0.28

-1.32

0.81

1984

7.3

3.32

4.73

1.90

-1.54

0.76

1985

4.2

3.25

-0.01

-1.03

-0.39

1.38

2009

-2.8

-1.06

-3.52

-0.76

1.14

0.64

2010

2.5

1.34

1.66

1.45

-0.51

0.02

2011

1.8

1.74

0.69

-0.16

0.10

-0.68

2012

2.8

1.52

1.36

0.20

0.10

-0.20

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Table I-12 provides more detail of the contributions to growth of GDP from 2009 to 2012 using annual-level data. PCEs contributed 1.34 PPs to GDP growth in 2010 of which 0.77 percentage points (PP) in goods and 0.57 PP in services. Gross private domestic investment (GPDI) deducted 3.52 PPs of GDP growth in 2009 of which -2.77 PPs by fixed investment and -0.76 PPs of inventory change (∆PI) and added 1.66 PPs of GPDI in 2010 of which minus 0.21 PPs of fixed investment and 1.45 PPs of inventory accumulation (∆PI). Trade, or exports of goods and services net of imports, contributed 1.14 PPs in 2009 of which exports deducted 1.10 PPs and imports added 2.24 PPs. In 2010, trade deducted 0.51 PPs with exports contributing 1.28 PPs and imports deducting 1.79 PPs likely benefitting from dollar devaluation. In 2009, government added 0.64 PP of which 0.44 PPs by the federal government and 0.20 PPs by state and local government; in 2010, government added 0.02 PPs of which 0.37 PPs by the federal government with state and local government deducting 0.35 PPs. The final two columns of Table I-12 provide the estimates for 2011 and 2012. PCE contributed 1.74 PPs in 2011 after 1.34 PPs in 2010. The contribution of PCE fell to 1.52 points in 2012. The breakdown into goods and services is similar but with contributions in 2012 of 0.77 PPs of goods and 0.74 PPs of services. Gross private domestic investment contributed 1.66 PPs in 2010 with 1.45 PPs of change of private inventories but the contribution of gross private domestic investment was only 0.69 PPs in 2011. The contribution of GPDI in 2012 increased to 1.36 PPs with fixed investment increasing its contribution to 1.17 PPs and residential investment contributing 0.32 PPs for the first time since 2009. Net exports of goods and services contributed marginally in 2011 with 0.10 PPs and 0.10 PPs in 2012. The contribution of exports fell from 1.28 PPs in 2010 and 0.89 PPs in 2011 to only 0.48 PPs in 2012. Government deducted 0.68 PPs in 2011 and 0.20 PPs in 2012. The expansion since IIIQ2009 has been characterized by weak contributions of aggregate demand, which is the sum of personal consumption expenditures plus gross private domestic investment. The US did not recover strongly from the global recessions as typical in past cyclical expansions. Recoveries tend to be more sluggish as expansions mature. At the margin in IVQ2011, the acceleration of expansion was driven by inventory accumulation instead of aggregate demand of consumption and investment. Growth of PCE was partly the result of burning savings because of financial repression, which may not be sustainable in the future while creating multiple distortions of resource allocation and growth restraint.

Table I-12, US, Contributions to Growth of Gross Domestic Product in Percentage Points

 

2009

2010

2011

2012

GDP Growth ∆%

-2.8

2.5

1.8

2.8

Personal Consumption Expenditures (PCE)

-1.06

1.34

1.74

1.52

  Goods

-0.68

0.77

0.76

0.77

     Durable

-0.41

0.43

0.46

0.56

     Nondurable

-0.27

0.34

0.30

0.22

  Services

-0.38

0.57

0.98

0.74

Gross Private Domestic Investment (GPDI)

-3.52

1.66

0.69

1.36

Fixed Investment

-2.77

0.21

0.85

1.17

    Nonresidential

-2.04

0.28

0.84

0.85

      Structures

-0.70

-0.49

0.05

0.31

      Equipment, software

-1.29

0.70

0.62

0.41

      Intellectual Property

-0.05

0.07

0.17

0.13

    Residential

-0.73

-0.07

0.01

0.32

Change Private Inventories

-0.76

1.45

-0.16

0.20

Net Exports of Goods and Services

1.14

-0.51

0.10

0.10

   Exports

-1.10

1.28

0.89

0.48

      Goods

-1.02

1.08

0.63

0.36

      Services

-0.08

0.20

0.27

0.12

   Imports

2.24

-1.79

-0.79

-0.38

      Goods

2.15

-1.72

-0.70

-0.30

      Services

0.08

-0.07

-0.09

-0.07

Government Consumption Expenditures and Gross Investment

0.64

0.02

-0.68

-0.20

  Federal

0.44

0.37

-0.23

-0.12

    National Defense

0.27

0.18

-0.13

-0.17

    Nondefense

0.17

0.19

-0.10

0.05

  State and Local

0.20

-0.35

-0.46

-0.08

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Manufacturing jobs increased 6,000 in Jul 2013 relative to Jun 2013, seasonally adjusted (Section II and earlier http://cmpassocregulationblog.blogspot.com/2013/07/twenty-nine-million-unemployed-or.html). Manufacturing jobs not seasonally adjusted increased 16,000 from Jul 2012 to Jul 2013 or at the average monthly rate of 1,333. There are effects of the weaker economy and international trade together with the yearly adjustment of labor statistics. The report of the Board of Governors of the Federal Reserve System states (http://www.federalreserve.gov/releases/g17/Current/default.htm):

“Industrial production was unchanged in July after having gained 0.2 percent in June. In July, manufacturing production declined 0.1 percent. The output of mines advanced 2.1 percent, its fourth consecutive monthly increase, and the production of utilities fell 2.1 percent, its fourth consecutive monthly decrease. At 98.9 percent of its 2007 average, total industrial production in July was 1.4 percent above its year-earlier level.”

In the six months ending in Jul 2013, United States national industrial production accumulated increase of 0.7 percent at the annual equivalent rate of 1.4 percent, which is equal to growth of 1.4 percent in 12 months. Excluding growth of 0.7 in Feb 2013, growth in the remaining five months from Mar 2012 to Jul 2013 accumulated to 0.0 percent or 0.0 percent annual equivalent. Industrial production stagnated in two of the past six months and fell in one. Business equipment accumulated growth of 2.0 percent in the six months from Feb to Jul 2013 at the annual equivalent rate of 1.8 percent, which is much higher than growth of 2.1 percent in 12 months. Growth of business equipment accumulated 0.1 percent from Mar to July 2013 at the annual equivalent rate of 0.2 percent. The Fed analyzes capacity utilization of total industry in its report (http://www.federalreserve.gov/releases/g17/Current/default.htm): “Capacity utilization for total industry edged down 0.1 percentage point to 77.6 percent in July, a rate 0.3 percentage point below its level of a year earlier and 2.6 percentage points below its long-run (1972-2012) average.” United States industry is apparently decelerating. Manufacturing decreased 0.1 percent in Jul 2013 after increasing 0.2 percent in Jun 2013 and 0.3 percent in May 2013 seasonally adjusted, increasing 1.4 percent not seasonally adjusted in 12 months ending in Jul 2013, as shown in Table II-2. Manufacturing grew cumulatively 0.3 percent in the six months ending in Jul 2013 or at the annual equivalent rate of 0.6 percent. Excluding the increase of 0.6 percent in Feb 2012, manufacturing accumulated growth of minus 0.3 percent from Mar 2013 to Jul 2013 or at the annual equivalent rate of minus 0.7 percent.

Table I-13 provides national income by industry without capital consumption adjustment (WCCA). “Private industries” or economic activities have share of 86.6 percent in IQ2013. Most of US national income is in the form of services. In Jul 2013, there were 135.664 million nonfarm jobs NSA in the US, according to estimates of the establishment survey of the Bureau of Labor Statistics (BLS) (http://www.bls.gov/news.release/empsit.nr0.htm Table B-1). Total private jobs of 115.081 million NSA in Jul 2013 accounted for 84.8 percent of total nonfarm jobs of 135.664 million, of which 12.045 million, or 10.5 percent of total private jobs and 8.9 percent of total nonfarm jobs, were in manufacturing. Private service-producing jobs were 96.093 million NSA in Jul 2013, or 70.8 percent of total nonfarm jobs and 83.5 percent of total private-sector jobs. Manufacturing has share of 10.9 percent in US national income in IQ2013, as shown in Table I-13. Most income in the US originates in services. Subsidies and similar measures designed to increase manufacturing jobs will not increase economic growth and employment and may actually reduce growth by diverting resources away from currently employment-creating activities because of the drain of taxation.

Table I-13, US, National Income without Capital Consumption Adjustment by Industry, Seasonally Adjusted Annual Rates, Billions of Dollars, % of Total

 

SAAR IQ2013

% Total

SAAR
IIQ2013

% Total

National Income WCCA

14,354.5

100.0

14,480.5

100.0

Domestic Industries

14,117.1

98.3

14,223.1

98.2

Private Industries

12,432.9

86.6

12,542.6

86.6

    Agriculture

226.4

1.6

   

    Mining

247.6

1.7

   

    Utilities

209.1

1.5

   

    Construction

618.2

4.3

   

    Manufacturing

1568.1

10.9

   

       Durable Goods

878.8

6.1

   

       Nondurable Goods

689.2

4.8

   

    Wholesale Trade

870.0

6.1

   

     Retail Trade

971.4

6.8

   

     Transportation & WH

434.0

3.0

   

     Information

496.0

3.5

   

     Finance, Insurance, RE

2418.9

16.8

   

     Professional, BS

1973.6

13.7

   

     Education, Health Care

1423.7

9.9

   

     Arts, Entertainment

569.7

4.0

   

     Other Services

406.1

2.8

   

Government

1684.3

11.7

1680.5

11.6

Rest of the World

237.4

1.7

257.4

1.8

Notes: SSAR: Seasonally-Adjusted Annual Rate; WCCA: Without Capital Consumption Adjustment by Industry; WH: Warehousing; RE, includes rental and leasing: Real Estate; Art, Entertainment includes recreation, accommodation and food services; BS: business services

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

IA1. Contracting Real Private Fixed Investment. The United States economy has grown at the average yearly rate of 3 percent per year and 2 percent per year in per capita terms from 1870 to 2010, as measured by Lucas (2011May). An important characteristic of the economic cycle in the US has been rapid growth in the initial phase of expansion after recessions.

Inferior performance of the US economy and labor markets is the critical current issue of analysis and policy design. Long-term economic performance in the United States consisted of trend growth of GDP at 3 percent per year and of per capita GDP at 2 percent per year as measured for 1870 to 2010 by Robert E Lucas (2011May). The economy returned to trend growth after adverse events such as wars and recessions. The key characteristic of adversities such as recessions was much higher rates of growth in expansion periods that permitted the economy to recover output, income and employment losses that occurred during the contractions. Over the business cycle, the economy compensated the losses of contractions with higher growth in expansions to maintain trend growth of GDP of 3 percent and of GDP per capita of 2 percent. US economic growth has been at only 2.2 percent on average in the cyclical expansion in the 16 quarters from IIIQ2009 to IIQ2013 (Section I and earlier http://cmpassocregulationblog.blogspot.com/2013/08/interest-rate-risks-duration-dumping.html). Boskin (2010Sep) measures that the US economy grew at 6.2 percent in the first four quarters and 4.5 percent in the first 12 quarters after the trough in the second quarter of 1975; and at 7.7 percent in the first four quarters and 5.8 percent in the first 12 quarters after the trough in the first quarter of 1983 (Professor Michael J. Boskin, Summer of Discontent, Wall Street Journal, Sep 2, 2010 http://professional.wsj.com/article/SB10001424052748703882304575465462926649950.html). (http://cmpassocregulationblog.blogspot.com/2013/06/twenty-eight-million-unemployed-or.html). The average of 7.7 percent in the first four quarters of major cyclical expansions is in contrast with the rate of growth in the first four quarters of the expansion from IIIQ2009 to IIQ2010 of only 2.7 percent obtained by diving GDP of $14,738.0 billion in IIQ2010 by GDP of $14,356.9 billion in IIQ2009 {[$14,738.0/$14,356.9 -1]100 = 2.7%], or accumulating the quarter on quarter growth rates (Section I and earlier http://cmpassocregulationblog.blogspot.com/2013/08/risks-of-steepening-yield-curve-and.html). The expansion from IQ1983 to IVQ1985 was at the average annual growth rate of 5.7 percent and at 7.8 percent from IQ1983 to IVQ1983 (Section I and earlier http://cmpassocregulationblog.blogspot.com/2013/08/risks-of-steepening-yield-curve-and.html). As a result, there are 28.3 million unemployed or underemployed in the United States for an effective unemployment rate of 17.4 percent (http://cmpassocregulationblog.blogspot.com/2013/08/risks-of-steepening-yield-curve-and.html).

Table IA1-1 provides quarterly seasonally adjusted annual rates (SAAR) of growth of private fixed investment for the recessions of the 1980s and the current economic cycle. In the cyclical expansion beginning in IQ1983 (http://www.nber.org/cycles.html), real private fixed investment in the United States grew at the average annual rate of 14.7 percent in the first eight quarters from IQ1983 to IVQ1984. Growth rates fell to an average of 2.2 percent in the following eight quarters from IQ1985 to IVQ1986. There were only two quarters of contraction of private fixed investment from IQ1983 to IVQ1986. There is quite different behavior of private fixed investment in the sixteen quarters of cyclical expansion from IIIQ2009 to IIQ2013. The average annual growth rate in the first eight quarters of expansion from IIIQ2009 to IIQ2011 was 3.3 percent, which is significantly lower than 14.7 percent in the first eight quarters of expansion from IQ1983 to IVQ1984. There is only strong growth of private fixed investment in the four quarters of expansion from IIQ2011 to IQ2012 at the average annual rate of 10.5 percent. Growth has fallen from the SAAR of 14.8 percent in IIIQ2011 to 2.7 percent in IIIQ2012, recovering to 11.6 percent in IVQ2012 and falling to minus 1.5 percent in IQ2013. The SAAR of fixed investment rose to 6.0 percent in IIQ2013. Sudeep Reddy and Scott Thurm, writing on “Investment falls off a cliff,” on Nov 18, 2012, published in the Wall Street Journal (http://professional.wsj.com/article/SB10001424127887324595904578123593211825394.html?mod=WSJPRO_hpp_LEFTTopStories) analyze the decline of private investment in the US and inform that a review by the Wall Street Journal of filing and conference calls finds that 40 of the largest publicly traded corporations in the US have announced intentions to reduce capital expenditures in 2012. The SAAR of real private fixed investment jumped to 11.6 percent in IVQ2012 but declined to minus 1.5 percent in IQ2013, recovering to 6.0 percent in IIQ2013.

Table IA1-1, US, Quarterly Growth Rates of Real Private Fixed Investment, % Annual Equivalent SA

Q

1981

1982

1983

1984

2008

2009

2010

I

3.8

-12.2

9.4

13.1

-7.1

-27.4

0.8

II

3.2

-12.1

16.0

16.6

-5.5

-14.2

13.6

III

0.1

-9.3

24.4

8.2

-12.1

-0.5

-0.4

IV

-1.5

0.2

24.3

7.3

-23.9

-2.8

8.5

       

1985

   

2011

I

     

3.7

   

-0.5

II

     

5.2

   

8.6

III

     

-1.6

   

14.8

IV

     

7.8

   

10.0

       

1986

   

2012

I

     

1.1

   

8.6

II

     

0.1

   

4.7

III

     

-1.8

   

2.7

IV

     

3.1

   

11.6

       

1987

   

2013

I

     

-6.7

   

-1.5

II

     

6.3

   

6.0

III

     

7.1

     

IV

     

-0.2

     

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Chart IA1-1 of the US Bureau of Economic Analysis (BEA) provides seasonally adjusted annual rates of growth of real private fixed investment from 1981 to 1986. Growth rates recovered sharply during the first eight quarters, which was essential in returning the economy to trend growth and eliminating unemployment and underemployment accumulated during the contractions.

clip_image003[1]

Chart IA1-1, US, Real Private Fixed Investment, Seasonally-Adjusted Annual Rates Percent Change from Prior Quarter, 1981-1986

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Weak behavior of real private fixed investment from 2007 to 2012 is shown in Chart IA1-2. Growth rates of real private fixed investment were much lower during the initial phase of expansion in the current economic cycle and have entered sharp trend of decline.

clip_image004[1]

Chart IA1-2, US, Real Private Fixed Investment, Seasonally-Adjusted Annual Rates Percent Change from Prior Quarter, 2007-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Table IA1-2 provides real private fixed investment at seasonally adjusted annual rates from IVQ2007 to IIQ2013 or for the complete economic cycle. The first column provides the quarter, the second column percentage change relative to IVQ2007, the third column the quarter percentage change in the quarter relative to the prior quarter and the final column percentage change in a quarter relative to the same quarter a year earlier. In IQ1980, gross private domestic investment in the US was $951.6 billion of 2009 dollars, growing to $1,143.0 billion in IVQ1986 or 20.1 percent. Real gross private domestic investment in the US decreased 2.9 percent from $2,605.2 billion of 2009 dollars in IVQ2007 to $2,529.2 billion in IIQ2013. As shown in Table IAI-2, real private fixed investment fell 5.0 percent from $2,586.3 billion of 2009 dollars in IVQ2007 to $2,455.8 billion in IIQ2013. Growth of real private investment in Table IA1-2 is mediocre for all but four quarters from IIQ2011 to IQ2012.

Table IA1-2, US, Real Private Fixed Investment and Percentage Change Relative to IVQ2007 and Prior Quarter, Billions of Chained 2005 Dollars and ∆%

 

Real PFI, Billions Chained 2005 Dollars

∆% Relative to IVQ2007

∆% Relative to Prior Quarter

∆%
over
Year Earlier

IVQ2007

2586.3

NA

-1.2

-1.4

IQ2008

2539.1

-1.8

-1.8

-3.0

IIQ2008

2503.4

-3.2

-1.4

-4.6

IIIQ2008

2424.1

-6.3

-3.2

-7.1

IV2008

2263.8

-12.5

-6.6

-12.5

IQ2009

2089.3

-19.2

-7.7

-17.7

IIQ2009

2011.0

-22.2

-3.7

-19.7

IIIQ2009

2008.4

-22.3

-0.1

-17.1

IVQ2009

1994.1

-22.9

-0.7

-11.9

IQ2010

1997.9

-22.8

0.2

-4.4

IIQ2010

2062.8

-20.2

3.2

2.6

IIIQ2010

2060.8

-20.3

-0.1

2.6

IVQ2010

2103.1

-18.7

2.1

5.5

IQ2011

2100.7

-18.8

-0.1

5.1

IIQ2011

2144.4

-17.1

2.1

4.0

IIIQ2011

2219.8

-14.2

3.5

7.7

IVQ2011

2273.4

-12.1

2.4

8.1

IQ2012

2320.8

-10.3

2.1

10.5

IIQ2012

2347.9

-9.2

1.2

9.5

IIIQ2012

2363.5

-8.6

0.7

6.5

IVQ2012

2429.1

-6.1

2.8

6.8

IQ2013

2420.0

-6.4

-0.4

4.3

IIQ2013

2455.8

-5.0

1.5

4.6

PFI: Private Fixed Investment

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Chart IA1-3 provides real private fixed investment in billions of chained 2009 dollars from IV2007 to IIQ2013. Real private fixed investment has not recovered, stabilizing at a level in IIQ2013 that is 5.0 percent below the level in IVQ2007.

clip_image005[1]

Chart IA1-3, US, Real Private Fixed Investment, Billions of Chained 2005 Dollars, IQ2007 to IQ2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IA1-4 provides real gross private domestic investment in chained dollars of 2005 from 1980 to 1986. Real gross private domestic investment climbed 20.1 percent in IVQ1986 above the level in IQ1980.

clip_image006[1]

Chart IA1-4, US, Real Gross Private Domestic Investment, Billions of Chained 2005 Dollars at Seasonally Adjusted Annual Rate, 1980-1986

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IA1-5 provides real gross private domestic investment in the United States in billions of dollars of 2009 from 2006 to 2013. Gross private domestic investment reached a level in IIQ2013 that was 2.9 percent lower than the level in IVQ2007 (http://www.bea.gov/iTable/index_nipa.cfm).

clip_image007[1]

Chart IA1-5, US, Real Gross Private Domestic Investment, Billions of Chained 2005 Dollars at Seasonally Adjusted Annual Rate, 2007-2013

Source: US Bureau of Economic Analysis http://www.bea.gov/iTable/index_nipa.cfm

Table IA1-3 provides percentage shares in GDP of gross private domestic investment and its components in IIQ2013, IIQ2006 and IIQ2000. The share of gross private domestic investment in GDP has fallen from 20.1 percent in IIQ2000 and 19.5 percent in IIQ2006 to 15.8 percent in IIQ2013. There are declines in percentage shares in GDP of all components with sharp reduction of residential investment from 4.7 percent in IIQ2000 and 6.2 percent in IIQ2006 to 3.1 percent in IIQ2013. The share of fixed investment in GDP fell from 19.3 percent in IIQ2000 and 19.0 percent in IIQ2006 to 15.2 percent in IIQ2013.

Table IA1-3, Percentage Shares of Gross Private Domestic Investment and Components in Gross Domestic Product, % of GDP, IQ2013

 

IIQ2013

IIQ2006

IIQ2000

Gross Private Domestic Investment

15.8

19.5

20.1

  Fixed Investment

15.2

19.0

19.3

     Nonresidential

12.2

12.8

14.5

          Structures

2.7

3.0

3.0

          Equipment

          and Software

5.6

6.2

7.5

          Intellectual
           Property

3.9

3.6

4.0

     Residential

3.1

6.2

4.7

   Change in Private Inventories

0.5

0.6

0.9

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Broader perspective is provided in Chart IA1-6 with the percentage share of gross private domestic investment in GDP in annual data from 1929 to 2012. There was sharp drop during the current economic cycle with almost no recovery in contrast with sharp recovery after the recessions of the 1980s

clip_image044

Chart IA1-6, US, Percentage Share of Gross Private Domestic Investment in Gross Domestic Product, Annual, 1929-2012

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IA1-7 provides percentage shares of private fixed investment in GDP with annual data from 1929 to 2012. The sharp contraction after the recessions of the 1980s was followed by sustained recovery while the sharp drop in the current economic cycle has not been recovered.

clip_image045

Chart IA1-7, US, Percentage Share of Private Fixed Investment in Gross Domestic Product, Annual, 1929-2012

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IA1-8 provides percentage shares in GDP of nonresidential investment from 1929 to 2012. There is again recovery from sharp contraction in the 1980s but inadequate recovery in the current economic cycle.

clip_image046

Chart IA1-8, US, Percentage Share of Nonresidential Investment in Gross Domestic Product, Annual, 1929-2012

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IA1-9 provides percentage shares of business equipment and software in GDP with annual data from 1929 to 2012. There is again inadequate recovery in the current economic cycle.

clip_image047

Chart IA1-9, US, Percentage Share of Business Equipment and Software in Gross Domestic Product, Annual, 1929-2012

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IA1-10 provides percentage shares of residential investment in GDP with annual data from 1929 to 2012. The salient characteristic of Chart IA1-10 is the vertical increase of the share of residential investment in GDP up to 2006 and subsequent collapse.

clip_image048

Chart IA1-10, US, Percentage Share of Residential Investment in Gross Domestic Product, Annual, 1929-2012

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Finer detail is provided by the quarterly share of residential investment in GDP from 1979 to 2013 in Chart IA1-11. There was protracted growth of that share, accelerating sharply into 2006 followed with nearly vertical drop. The explanation of the sharp contraction of United States housing can probably be found in the origins of the financial crisis and global recession. Let V(T) represent the value of the firm’s equity at time T and B stand for the promised debt of the firm to bondholders and assume that corporate management, elected by equity owners, is acting on the interests of equity owners. Robert C. Merton (1974, 453) states:

“On the maturity date T, the firm must either pay the promised payment of B to the debtholders or else the current equity will be valueless. Clearly, if at time T, V(T) > B, the firm should pay the bondholders because the value of equity will be V(T) – B > 0 whereas if they do not, the value of equity would be zero. If V(T) ≤ B, then the firm will not make the payment and default the firm to the bondholders because otherwise the equity holders would have to pay in additional money and the (formal) value of equity prior to such payments would be (V(T)- B) < 0.”

Pelaez and Pelaez (The Global Recession Risk (2007), 208-9) apply this analysis to the US housing market in 2005-2006 concluding:

“The house market [in 2006] is probably operating with low historical levels of individual equity. There is an application of structural models [Duffie and Singleton 2003] to the individual decisions on whether or not to continue paying a mortgage. The costs of sale would include realtor and legal fees. There could be a point where the expected net sale value of the real estate may be just lower than the value of the mortgage. At that point, there would be an incentive to default. The default vulnerability of securitization is unknown.”

There are multiple important determinants of the interest rate: “aggregate wealth, the distribution of wealth among investors, expected rate of return on physical investment, taxes, government policy and inflation” (Ingersoll 1987, 405). Aggregate wealth is a major driver of interest rates (Ibid, 406). Unconventional monetary policy, with zero fed funds rates and flattening of long-term yields by quantitative easing, causes uncontrollable effects on risk taking that can have profound undesirable effects on financial stability. Excessively aggressive and exotic monetary policy is the main culprit and not the inadequacy of financial management and risk controls.

The net worth of the economy depends on interest rates. In theory, “income is generally defined as the amount a consumer unit could consume (or believe that it could) while maintaining its wealth intact” (Friedman 1957, 10). Income, Y, is a flow that is obtained by applying a rate of return, r, to a stock of wealth, W, or Y = rW (Ibid). According to a subsequent restatement: “The basic idea is simply that individuals live for many years and that therefore the appropriate constraint for consumption decisions is the long-run expected yield from wealth r*W. This yield was named permanent income: Y* = r*W” (Darby 1974, 229), where * denotes permanent. The simplified relation of income and wealth can be restated as:

W = Y/r (1)

Equation (1) shows that as r goes to zero, r →0, W grows without bound, W→∞.

Lowering the interest rate near the zero bound in 2003-2004 caused the illusion of permanent increases in wealth or net worth in the balance sheets of borrowers and also of lending institutions, securitized banking and every financial institution and investor in the world. The discipline of calculating risks and returns was seriously impaired. The objective of monetary policy was to encourage borrowing, consumption and investment but the exaggerated stimulus resulted in a financial crisis of major proportions as the securitization that had worked for a long period was shocked with policy-induced excessive risk, imprudent credit, high leverage and low liquidity by the incentive to finance everything overnight at close to zero interest rates, from adjustable rate mortgages (ARMS) to asset-backed commercial paper of structured investment vehicles (SIV).

The consequences of inflating liquidity and net worth of borrowers were a global hunt for yields to protect own investments and money under management from the zero interest rates and unattractive long-term yields of Treasuries and other securities. Monetary policy distorted the calculations of risks and returns by households, business and government by providing central bank cheap money. Short-term zero interest rates encourage financing of everything with short-dated funds, explaining the SIVs created off-balance sheet to issue short-term commercial paper to purchase default-prone mortgages that were financed in overnight or short-dated sale and repurchase agreements (Pelaez and Pelaez, Financial Regulation after the Global Recession, 50-1, Regulation of Banks and Finance, 59-60, Globalization and the State Vol. I, 89-92, Globalization and the State Vol. II, 198-9, Government Intervention in Globalization, 62-3, International Financial Architecture, 144-9). ARMS were created to lower monthly mortgage payments by benefitting from lower short-dated reference rates. Financial institutions economized in liquidity that was penalized with near zero interest rates. There was no perception of risk because the monetary authority guaranteed a minimum or floor price of all assets by maintaining low interest rates forever or equivalent to writing an illusory put option on wealth. Subprime mortgages were part of the put on wealth by an illusory put on house prices. The housing subsidy of $221 billion per year created the impression of ever increasing house prices. The suspension of auctions of 30-year Treasuries was designed to increase demand for mortgage-backed securities, lowering their yield, which was equivalent to lowering the costs of housing finance and refinancing. Fannie and Freddie purchased or guaranteed $1.6 trillion of nonprime mortgages and worked with leverage of 75:1 under Congress-provided charters and lax oversight. The combination of these policies resulted in high risks because of the put option on wealth by near zero interest rates, excessive leverage because of cheap rates, low liquidity because of the penalty in the form of low interest rates and unsound credit decisions because the put option on wealth by monetary policy created the illusion that nothing could ever go wrong, causing the credit/dollar crisis and global recession (Pelaez and Pelaez, Financial Regulation after the Global Recession, 157-66, Regulation of Banks, and Finance, 217-27, International Financial Architecture, 15-18, The Global Recession Risk, 221-5, Globalization and the State Vol. II, 197-213, Government Intervention in Globalization, 182-4).

clip_image049

Chart IA1-11, US, Percentage Share of Residential Investment in Gross Domestic Product, Quarterly, 1979-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IA1-12 provides the share of intellectual property products investment in GDP with annual data from 1929 to 2012. This is an important addition in the revision and enhancement of GDP provided by the Bureau of Economic Analysis. The share rose sharply over time but in the past decade and stabilized at a lower level.

clip_image050

Chart IA1-12, US, Percentage Share of Intellectual Property Products Investment in Gross Domestic Product, Annual, 1929-2012

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Chart IA1-13 provides the percentage share of intellectual property investment in GDP on a quarterly basis from 1979 to 2013. The share stabilized in the 2000s.

clip_image051

Chart IA1-13, US, Percentage Share of Intellectual Property Investment in Gross Domestic Product, Quarterly, 1979-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Table IA1-4 provides the seasonally adjusted annual rate of real GDP percentage change and contributions in percentage points in annual equivalent rate of gross domestic investment (GDI), real private fixed investment (PFI), nonresidential investment (NRES), business equipment and software (BES), residential investment (RES), intellectual property products (IPP) and change in inventories (∆INV) for the cyclical expansions from IQ1983 to IVQ1985 and from IIIQ2009 to IIQ2013. GDI provided strong percentage points contributions to GDP growth in the critical first year of expansion in 1983 and also in several quarters in 1984 and 1985 while it has been muted in the cyclical expansion since IIIQ2009 with contributions largely only from IQ2010 to IVQ2011. Gross domestic investment added 1.48 percentage points to GDP growth of 2.5 percent in IIQ2013 partly because of change of inventories of 0.59 percentage points with PFI adding 0.90 percentage points. Nonresidential investment added 0.53 percentage points and residential investment added 0.37 percentage points to GDP growth of 2.5 percent in IIQ2013. GDI added 0.71 percentage points in IQ2013 mostly because of 0.93 percentage points of inventory investment while private fixed investment deducted 0.23 percentage points. Nonresidential investment deducted 0.57 percentage points. Business equipment and software added 0.09 percentage points and residential investment 0.34 percentage points. Intellectual property products (IPP) added 0.14 percentage points in IQ2013 and deducted 0.04 percentage points in IIQ2013. Much of the strong performance of GDI in the cyclical expansion after IQ1983 originated in contributions by real private fixed investment (PFI). Nonresidential investment also contributed strongly to growth in the expansion of the 1980s but has been muted in the current expansion. The contribution of business equipment and software collapsed to negative 0.22 percentage points in IIIQ2012 as business scales down investment but rebounded with 0.47 percentage points in IVQ2012, 0.09 percentage points in IQ2013 and 0.16 percentage points in IIQ2013. Residential investment (RES) was relatively strong in 1983 but was muted in following quarters. Residential investment only contributed significantly to growth of GDP in the four quarters of 2012, IQ2013 and IIQ2013.

Table IA1-4, US, Contributions to the Rate of Growth of Real GDP in Percentage Points

 

GDP

GDI

PFI

NRES

BES

IPP

RES

∆INV

2013

               

I

1.1

0.71

-0.23

-0.57

0.09

0.14

0.34

0.93

II

2.5

1.48

0.90

0.53

0.16

-0.04

0.37

0.59

2012

               

I

3.7

1.57

1.21

0.68

0.45

0.05

0.53

0.36

II

1.2

-0.23

0.68

0.53

0.29

0.07

0.15

-0.91

III

2.8

0.99

0.39

0.04

-0.22

0.11

0.35

0.60

IV

0.1

-0.36

1.63

1.13

0.47

0.21

0.50

-2.00

2011

               

I

-1.3

-1.11

-0.05

-0.09

0.59

0.14

0.04

-1.06

II

3.2

1.88

1.16

1.09

0.23

0.18

0.07

0.72

III

1.4

0.36

1.96

1.81

0.99

0.20

0.15

-1.60

IV

4.9

4.13

1.39

1.10

0.54

0.21

0.29

2.73

2010

               

I

1.6

1.77

0.11

0.46

1.25

-0.07

-0.35

1.66

II

3.9

2.86

1.77

1.21

1.02

-0.08

0.56

1.09

III

2.8

1.86

-0.04

0.90

0.83

0.22

-0.94

1.90

IV

2.8

-0.51

1.13

0.94

0.57

0.19

0.19

-1.64

2009

               

I

-5.4

-7.02

-4.75

-3.58

-2.25

-0.23

-1.17

-2.26

II

-0.4

-3.25

-2.13

-1.46

-0.60

0.16

-0.66

-1.12

III

1.3

-0.40

-0.02

-0.54

0.25

0.04

0.52

-0.38

IV

3.9

4.05

-0.36

-0.37

0.36

0.25

0.01

4.40

1982

               

I

-6.5

-7.60

-2.26

-1.45

-0.83

0.14

-0.81

-5.34

II

2.2

-0.06

-2.32

-1.89

-1.20

0.08

-0.44

2.26

III

-1.4

-0.62

-1.73

-1.71

-0.55

0.06

-0.02

1.11

IV

0.4

-5.37

-0.03

-1.05

-0.57

0.00

1.01

-5.33

1983

               

I

5.3

2.36

1.44

-0.92

-0.27

0.16

2.36

0.92

II

9.4

5.96

2.53

0.67

1.24

0.29

1.86

3.43

III

8.1

4.40

3.82

2.13

1.43

0.31

1.70

0.57

IV

8.5

6.94

3.93

3.14

2.32

0.35

0.79

3.01

1984

               

I

8.2

7.23

2.29

1.71

0.46

0.30

0.58

4.94

II

7.2

2.57

2.86

2.52

1.36

0.29

0.34

-0.29

III

4.0

1.69

1.48

1.70

0.88

0.25

-0.22

0.21

IV

3.2

-1.08

1.36

1.34

0.86

0.29

0.02

-2.44

1985

               

I

4.0

-2.14

0.72

0.67

-0.23

0.14

0.05

-2.86

II

3.7

1.34

0.99

0.83

0.64

0.20

0.16

0.35

III

6.4

-0.43

-0.28

-0.62

-0.38

0.13

0.34

-0.15

IV

3.0

2.80

1.40

1.00

0.53

0.26

0.40

1.40

1986

               

I

3.8

0.04

0.21

-0.55

-0.28

0.17

0.76

-0.17

II

1.9

-1.30

0.00

-1.12

0.34

0.15

1.12

-1.30

III

4.1

-1.97

-0.34

-0.63

0.17

0.10

0.28

-1.62

IV

2.1

0.24

0.53

0.48

0.30

0.10

0.05

-0.29

GDP: Gross Domestic Product; GDI: Gross Domestic Investment; PFI: Private Fixed Investment; NRES: Nonresidential; BES: Business Equipment and Software; IPP: Intellectual Property Products; RES: Residential; ∆INV: Change in Private Inventories.

GDI = PFI + ∆INV, may not add exactly because of errors of rounding.

GDP: Seasonally adjusted annual equivalent rate of growth in a quarter; components: percentage points at annual rate.

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

IA2 Swelling Undistributed Corporate Profits. Table IA1-5 provides value added of corporate business, dividends and corporate profits in billions of current dollars at seasonally adjusted annual rates (SAAR) in IVQ2007 and IIQ2013 together with percentage changes. The last three rows of Table IA1-5 provide gross value added of nonfinancial corporate business, consumption of fixed capital and net value added in billions of chained 2009 dollars at SAARs. Deductions from gross value added of corporate profits down the rows of Table IA1-5 end with undistributed corporate profits. Profits after taxes with inventory valuation adjustment (IVA) and capital consumption adjustment (CCA) increased by 100.3 percent in nominal terms from IVQ2007 to IQ2013 while net dividends increased 24.6 percent and undistributed corporate profits swelled 280.2 percent from $107.7 billion in IQ2007 to $409.5 billion in IIQ2013 and changed signs from minus $55.9 billion in current dollars in IVQ2007. The investment decision of United States corporations has been fractured in the current economic cycle in preference of cash. Gross value added of nonfinancial corporate business adjusted for inflation increased 4.9 percent from IVQ2007 to IIQ2013, which is much lower than nominal increase of 15.3 percent in the same period for gross value added of total corporate business.

Table IA1-5, US, Value Added of Corporate Business, Corporate Profits and Dividends, IVQ2007-IQ2013

 

IVQ2007

IIQ2013

∆%

Current Billions of Dollars Seasonally Adjusted Annual Rates (SAAR)

     

Gross Value Added of Corporate Business

8,165.9

9,417.0

15.3

Consumption of Fixed Capital

1,216.5

1,415.7

16.4

Net Value Added

6,949.4

8,001.3

15.1

Compensation of Employees

4,945.8

5,349.9

8.2

Taxes on Production and Imports Less Subsidies

688.5

752.4

9.3

Net Operating Surplus

1,315.1

1,899.0

44.4

Net Interest and Misc

204.2

114.1

-44.1

Business Current Transfer Payment Net

68.9

98.1

42.4

Corporate Profits with IVA and CCA Adjustments

1,042.0

1,686.8

61.9

Taxes on Corporate Income

408.8

418.7

2.4

Profits after Tax with IVA and CCA Adjustment

633.2

1,268.1

100.3

Net Dividends

689.1

858.6

24.6

Undistributed Profits with IVA and CCA Adjustment

-55.9

409.5

NA

Billions of Chained USD 2009 SAAR

     

Gross Value Added of Nonfinancial Corporate Business

7,519.3

7,886.8

4.9

Consumption of Fixed Capital

1,066.0

1,164.7

9.3

Net Value Added

6,453.4

6,722.1

4.2

IVA: Inventory Valuation Adjustment; CCA: Capital Consumption Adjustment

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Table IA1-6 provides comparable United States value added of corporate business, corporate profits and dividends from IQ1980 to IIIQ1986. There is significant difference both in nominal and inflation-adjusted data. Between IQ1980 and IIIQ1986, profits after tax with IVA and CCA increased 68.6 percent with dividends growing 110.0 percent and undistributed profits increasing 40.0 percent. There was much higher inflation in the 1980s than in the current cycle. For example, the consumer price index for all items not seasonally adjusted increased 37.9 percent between Mar 1980 and Dec 1986 but only 11.2 percent between Dec 2007 and Jun 2013 (http://www.bls.gov/cpi/data.htm). The comparison is still valid in terms of inflation-adjusted data: gross value added of nonfinancial corporate business adjusted for inflation increased 23.7 percent between IQ1980 and IIIQ1986 but only 4.9 percent between IVQ2007 and IIQ2013 while net value added adjusted for inflation increased 22.4 percent between IQ1980 and IIIQ1986 but only 4.2 percent between IVQ2007 and IIQ2013.

Table IA1-6, US, Value Added of Corporate Business, Corporate Profits and Dividends, IQ1980-IVQ1985

 

IQ1980

IIIQ1986

∆%

Current Billions of Dollars Seasonally Adjusted Annual Rates (SAAR)

     

Gross Value Added of Corporate Business

1,654.1

2,713.5

64.0

Consumption of Fixed Capital

200.5

352.7

75.9

Net Value Added

1,453.6

2,360.9

62.4

Compensation of Employees

1,072.9

1,732.1

61.4

Taxes on Production and Imports Less Subsidies

121.5

220.9

81.8

Net Operating Surplus

259.2

408.0

57.4

Net Interest and Misc.

50.4

105.4

109.1

Business Current Transfer Payment Net

11.5

26.4

129.6

Corporate Profits with IVA and CCA Adjustments

197.2

276.2

40.1

Taxes on Corporate Income

97.0

107.3

10.6

Profits after Tax with IVA and CCA Adjustment

100.2

168.9

68.6

Net Dividends

40.9

85.9

110.0

Undistributed Profits with IVA and CCA Adjustment

59.3

83.0

40.0

Billions of Chained USD 2009 SAAR

     

Gross Value Added of Nonfinancial Corporate Business

2,952.3

3,651.9

23.7

Consumption of Fixed Capital

315.6

423.6

34.2

Net Value Added

2,636.7

3,228.3

22.4

IVA: Inventory Valuation Adjustment; CCA: Capital Consumption Adjustment

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Chart IA1-12 of the US Bureau of Economic Analysis provides quarterly corporate profits after tax and undistributed profits with IVA and CCA from 1979 to 2013. There is tightness between the series of quarterly corporate profits and undistributed profits in the 1980s with significant gap developing from 1988 and to the present with the closest approximation peaking in IVQ2005 and surrounding quarters. These gaps widened during all recessions including in 1991 and 2001 and recovered in expansions with exceptionally weak performance in the current expansion.

clip_image008[1]

Chart IA1-14, US, Corporate Profits after Tax and Undistributed Profits with Inventory Valuation Adjustment and Capital Consumption Adjustment, Quarterly, 1979-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Table IA1-7 provides price, costs and profit per unit of gross value added of nonfinancial domestic corporate income for IVQ2007 and IIQ2013 in the upper block and for IQ1980 and IIIQ1986 in the lower block. Compensation of employees or labor costs per unit of gross value added of nonfinancial domestic corporate income hardly changed from 0.577 in IVQ2007 to 0.596 in IIQ2013 in a fractured labor market but increased from 0.340 in IQ1980 to 0.434 in IIIQ1986 in a more vibrant labor market. Unit nonlabor costs increased mildly from 0.270 per unit of gross value added in IVQ2007 to 0.294 in IIQ2013 but increased from 0.124 in IQ1980 to 0.181 in IIIQ1986 in an economy closer to full employment of resources. Profits after tax with IVA and CCA per unit of gross value added of nonfinancial domestic corporate income increased from 0.076 in IVQ2007 to 0.124 in IIQ2013 and from 0.029 in IQ1980 to 0.040 in IIIQ1986.

Table IA1-7, US, Price, Costs and Profit per Unit of Gross Value Added of Nonfinancial Domestic Corporate Income

 

IVQ2007

IIQ2013

Price per Unit of Real Gross Value Added of Nonfinancial Corporate Business

0.961

1.047

Compensation of Employees (Unit Labor Cost)

0.577

0.596

Unit Nonlabor Cost

0.270

0.294

Consumption of Fixed Capital

0.140

0.156

Taxes on Production and Imports less Subsidies plus Business Current Transfer Payments (net)

0.093

0.099

Net Interest and Misc. Payments

0.037

0.039

Corporate Profits with IVA and CCA Adjustment (Unit Profits from Current Production)

0.114

0.157

Taxes on Corporate Income

0.038

0.034

Profits after Tax with IVA and CCA Adjustment

0.076

0.124

 

IQ1980

IIIQ1986

Price per Unit of Real Gross Value Added of Nonfinancial Corporate Business

0.518

0.676

Compensation of Employees (Unit Labor Cost)

0.340

0.434

Unit Nonlabor Cost

0.124

0.181

Consumption of Fixed Capital

0.064

0.088

Taxes on Production and Imports less Subsidies plus Business Current Transfer Payments (net)

0.042

0.063

Net Interest and Misc. Payments

0.018

0.030

Corporate Profits with IVA and CCA Adjustment (Unit Profits from Current Production)

0.055

0.061

Taxes on Corporate Income

0.026

0.020

Profits after Tax with IVA and CCA Adjustment

0.029

0.040

IVA: Inventory Valuation Adjustment; CCA: Capital Consumption Adjustment

Source: US Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Chart IA1-13 provides quarterly profits after tax with IVA and CCA per unit of gross value added of nonfinancial domestic corporate income from 1980 to 2013. In an environment of idle labor and other productive resources nonfinancial corporate income increased after tax profits with IVA and CCA per unit of gross value added at a faster pace in the weak economy from IVQ2007 to IIQ2013 than in the vibrant expansion of the cyclical contractions of the 1980s. Part of the profits was distributed as dividends and significant part was retained as undistributed profits in the current economic cycle with frustrated investment decision.

clip_image052

Chart IA1-15, US, Profits after Tax with Inventory Valuation Adjustment and Capital Consumption Adjustment per Unit of Gross Value Added of Nonfinancial Domestic Corporate Income, 1980-2013

Source: US Bureau of Economic Analysis

http://www.bea.gov/iTable/index_nipa.cfm

Table IA1-8 provides seasonally adjusted annual rates of change of corporate profits from IIIQ2012 to IIQ2013. US corporate profits with inventory valuation adjustment (IVA) and capital consumption adjustment (CCA) fell 1.3 percent in IQ2013 and 0.1 percent after taxes. Corporate profits with IVA and CCA rebounded at 3.9 percent in IIQ2013 and at 4.2 percent after taxes. Net dividends jumped 16.2 percent in IVQ2012 in generalized anticipation of income because of fear of the so-called “fiscal cliff,” or increases in taxes in 2013, and fell 12.0 percent in IQ2013 in adjustment to normal levels. Net dividends jumped at 35.9 percent in IIQ2013. Undistributed profits fell 9.7 percent in IVQ2012 in anticipation of tax increases and adjusted by increasing 13.7 percent in IQ2013. Undistributed profits fell at 24.3 percent in IIQ2013.

Table IA1-8, Quarterly Seasonally Adjusted Annual Equivalent Percentage Rates of Change of Corporate Profits, ∆%

 

IIIQ2012

IVQ2012

IQ2013

IIQ2013

Corporate Profits with IVA and CCA

0.7

1.7

-1.3

3.9

Corporate Income Taxes

2.2

-1.3

-5.8

2.6

After Tax Profits with IVA and CCA

0.3

2.6

-0.1

4.2

Net Dividends

1.0

16.2

-12.0

35.9

Und Profits with IVA and CCA

-0.3

-9.7

13.7

-24.3

Source: Bureau of Economic Analysis http://bea.gov/iTable/index_nipa.cfm

Table IA1-9 provides change from prior quarter of the level of seasonally adjusted annual rates of US corporate profits. Corporate profits with IVA and CCA fell $26.6 billion in IQ2013 after increasing $34.9 billion in IVQ2012 and $13.9 billion in IIIQ2012. Corporate profits with IVA and CCA rebounded with $78.3 billion in IIQ2013. Profits after tax with IVA and CCA fell $1.7 billion in IQ2013 after increasing $40.8 billion in IVQ2012 and $4.5 billion in IIIQ2012. In IIQ2013, profits after tax with IVA and CCA increased $67.8 billion. Anticipation of higher taxes in the “fiscal cliff” episode caused increase of $120.9 billion in net dividends in IVQ2012 followed with adjustment in the form of decrease of net dividends by $103.8 billion in IQ2013, rebounding with $273.8 billion in IIQ2013. There is similar decrease of $80.1 billion in undistributed profits with IVA and CCA in IVQ2012 followed by increase of $102.1 billion in IQ2013 and decline of $205.9 billion in IIQ2013. Undistributed profits of US corporations swelled 280.2 percent from $107.7 billion IQ2007 to $409.5 billion in IIQ2013 and changed signs from minus $55.9 billion in billion in IVQ2007 (Section IA2). In IQ2013, corporate profits with inventory valuation and capital consumption adjustment fell $26.6 billion relative to IVQ2012, from $2047.2 billion to $2020.6 billion at the quarterly rate of minus 1.3 percent. In IIQ2013, corporate profits with IVA and CCA increased $78.3 billion from $2020.6 billion in IQ2013 to $2098.9 billion at the quarterly rate of 3.9 percent (http://www.bea.gov/newsreleases/national/gdp/2013/pdf/gdp2q13_2nd.pdf). Uncertainty originating in fiscal, regulatory and monetary policy causes wide swings in expectations and decisions by the private sector with adverse effects on investment, real economic activity and employment.

Table IA1-9, Change from Prior Quarter of Level of Seasonally Adjusted Annual Equivalent Rates of Corporate Profits, Billions of Dollars

 

IIIQ2012

IVQ2012

IQ2013

IIQ2013

Corporate Profits with IVA and CCA

13.9

34.9

-26.6

78.3

Corporate Income Taxes

9.4

-5.9

-25.0

10.5

After Tax Profits with IVA and CCA

4.5

40.8

-1.7

67.9

Net Dividends

7.1

120.9

-103.8

273.8

Und Profits with IVA and CCA

-2.6

-80.1

102.1

-205.9

Source: Bureau of Economic Analysis

http://bea.gov/iTable/index_nipa.cfm

© Carlos M. Pelaez, 2009, 2010, 2011, 2012, 2013

No comments:

Post a Comment